LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Salituro, A; Westwood, AVK; Ross, A; Drummond-Brydson, R
Languages: English
Types: Unknown
Subjects:
Oak wood precursor was used for preparing low-cost CO2 sorbents. Adsorption is proposed as a cheaper alternative to chemical absorption, which is uneconomical, thus reducing the cost associated with the capture step. The raw material has been carbonised either by pyrolysis or by a hydrothermal carbonisation (HTC). Resulting biochars were then activated using CO2 . Initial chars and their activated counterparts were characterised by SEM imaging and N2 sorption measurements at 77 K. A significant rise in the BET surface area, total pore volume and micropore volume (textural parameters) occurred for all of the pristine chars after the activation process. Fast CO2 sorption kinetics (saturation reached in 3 mins.) and CO2 uptakes of up to ca. 6 wt. % have been measured by thermogravimetric analysis (TGA) at 35 ºC and 1 atm. The activated carbons (ACs) thus synthesised showed competitive performances compared to a commercial AC standard. Although the sorbents’ performances decreased at higher temperatures, they were easily regenerated after the capture stage.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 30
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article