Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Karami, Amin; Guerrero Zapata, Manel (2015)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: DoS attacks, NSGA II, Intelligent hybrid algorithm, :Informàtica::Arquitectura de computadors [Àrees temàtiques de la UPC], Algorismes genètics, Genetic algorithms, Particle Swarm Optimization, Computer networks -- Security measures, Named Data Networking, RBF neural networks, Ordinadors, Xarxes d' -- Mesures de seguretat
Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based (host-centric) Internet infrastructure. NDN can overcome the fundamental limitations of the current Internet, in particular, Denial-of-Service (DOS) attacks. However, NDN can be subject to new type of DoS attacks namely Interest flooding attacks and content poisoning. These types of attacks exploit key architectural features of NDN. This paper presents a new intelligent hybrid algorithm for proactive detection of DoS attacks and adaptive mitigation reaction in NDN. In the detection phase, a combination of multiobjective evolutionary optimization algorithm with PSO in the context of the RBF neural network has been applied in order to improve the accuracy of DoS attack prediction. Performance of the proposed hybrid approach is also evaluated successfully by some benchmark problems. In the adaptive reaction phase, we introduced a framework for mitigating DoS attacks based on the misbehaving type of network nodes. The evaluation through simulations shows that the proposed intelligent hybrid algorithm (proactive detection and adaptive reaction) can quickly and effectively respond and mitigate DoS attacks in adverse conditions in terms of the applied performance criteria. Peer Reviewed
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Conti, M., Gasti, P., Teoli, M.. A lightweight mechanism for detection of cache pollution attacks in named data networking. Computer Networks 2013;57(16):3178-3191.
    • [2] Rossini, G., Rossi, D.. Evaluating ccn multi-path interest forwarding strategies. Computer Communications 2013;36(7):771-778.
    • [3] Li, C., Liu, W., Okamura, K.. A greedy ant colony forwarding algorithm for named data networking. In: Proceedings of the Asia-Pacific Advanced Network; vol. 34. 2012, p. 17-26.
    • [4] Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B.. A survey of information-centric networking (draft). In: Information-Centric Networking. Dagstuhl Seminar Proceedings; Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany; 2011,.
    • [5] Lee, H., Nakao, A.. User-assisted in-network caching in information-centric networking. Computer Networks 2013;57(16):3142-3153.
    • [6] Smetters, D.K., Jacobson, V.. Securing network content. parc tr-2009-1. Tech. Rep.; October, 2009.
    • [7] Ran, J., Lv, N., Zhang, D., Ma, Y., Xie, Z.. On performance of cache policies in named data networking. In: International Conference on Advanced Science and Electronics Information (ICACSEI). Atlantis Press; 2013, p. 668-671.
    • [8] Amadeo, M., Campolo, C., Molinaro, A., Ruggeri, G.. Content-centric wireless networking: A survey. Computer Networks 2014;72:1-13.
    • [9] Dannewitz, C., Kutscher, D., Ohlman, B., Farrell, S., Ahlgren, B., Karl, H.. Network of information (netinf) - an information-centric networking. Computer Communications 2013;36(7):721-735.
    • [10] Jiang, X., Bi, J.. Technical report: Named content delivery network. Tech. Rep.; 2013.
    • [11] Carofiglio, G., Gallo, M., Muscariello, L.. On the performance of bandwidth and storage sharing in information-centric networks. Computer Networks 2013;57(17):3743-3758.
    • [12] Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.. Networking named content. In: Proceedings of the 5th international conference on Emerging networking experiments and technologies. CoNEXT '09; New York, NY, USA: ACM; 2009,.
    • [13] M. Xie, I.W., Wang, H.. Enhancing cache robustness for content-centric networking. In: INFOCOM12. 2012, p. 2426- 2434.
    • [14] Bari, M., Chowdhury, S., Ahmed, R., Boutaba, R., Mathieu, B.. A survey of naming and routing in information-centric networks. In: Communications Magazine, IEEE; vol. 50. 2012, p. 44-53.
    • [15] Afanasyev, A., Mahadevan, P., Moiseenko, I., Uzun, E., Zhang, L.. Interest flooding attack and countermeasures in named data networking. In: IFIP Networking Conference, 2013. 2013, p. 1-9.
    • [16] Karami, A.. Data clustering for anomaly detection in contentcentric networks. International Journal of Computer Applications 2013;81(7):1-8. Published by Foundation of Computer Science, New York, USA.
    • [17] Wa¨hlisch, M., Schmidt, T.C., Vahlenkamp, M.. Backscatter from the data plane - threats to stability and security in information-centric networking. CoRR 2012;abs/1205.4778.
    • [18] Choi, S., Kim, K., Kim, S., hee Roh, B.. Threat of dos by interest flooding attack in content-centric networking. In: International Conference on Information Networking (ICOIN). 2013, p. 315-319.
    • [19] Zhang, L., Estrin, D., Burke, J., Jacobson, V., Thornton, J.D., Smetters, D.K., et al. Named data networking (ndn) project. In: In Proceedings of the ACM SIGCOMM workshop on Information-centric networking. PARC TR-2010-3; 2010, p. 68-73.
    • [20] Gasti, P., Tsudik, G., Uzun, E., Zhang, L.. Dos and ddos in named-data networking. In: 22nd International Conference on Computer Communications and Networks (ICCCN 2013). 2013,.
    • [21] Compagno, A., Conti, M., Gasti, P., Tsudik, G.. Poseidon: Mitigating interest flooding ddos attacks in named data networking. CoRR 2013;abs/1303.4823.
    • [22] Oke, G., Loukas, G., Gelenbe, E.. Detecting denial of service attacks with bayesian classifiers and the random neural network. In: International Fuzzy Systems Conference, FUZZIEEE 2007. 2007, p. 1-6.
    • [23] Fiore, U., Palmieri, F., Castiglione, A., Santis, A.D.. Network anomaly detection with the restricted boltzmann machine. Neurocomputing 2013;122:13-23. Advances in cognitive and ubiquitous computing Selected papers from the Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2012).
    • [24] Liao, H.J., Lin, C.H.R., Lin, Y.C., Tung, K.Y.. Intrusion detection system: A comprehensive review. Journal of Network and Computer Applications 2013;36(1):16-24.
    • [25] Kolias, C., Kambourakis, G., Maragoudakis, M.. Swarm intelligence in intrusion detection: A survey. Computers and Security 2011;30(8):625-642.
    • [26] Han, H.G., li Chen, Q., Qiao, J.F.. An e cient self-organizing rbf neural network for water quality prediction. Neural Networks 2011;24:717-725.
    • [27] Shahreza, M.L., Moazzami, D., Moshiri, B., Delavar, M.. Anomaly detection using a self-organizing map and particle swarm optimization. Scientia Iranica 2011;18(6):1460-1468.
    • [28] Li, X.L., Jia, C., Liu, D.X., Ding, D.W.. Nonlinear adaptive control using multiple models and dynamic neural networks. Neurocomputing 2014;136:190-200.
    • [29] Michailidis, E., Katsikas, S., Georgopoulos, E.. Intrusion detection using evolutionary neural networks. In: Informatics, 2008. PCI '08. Panhellenic Conference on. 2008, p. 8-12.
    • [30] Jiang, X., Liu, K., Yan, J., Chen, W.. Application of improved fSOMg neural network in anomaly detection. Physics Procedia 2012;33:1093-1099.
    • [31] Wang, G., Hao, J., Ma, J., Huang, L.. A new approach to intrusion detection using artificial neural networks and fuzzy clustering. Expert Systems with Applications 2010;37(9):6225-6232.
    • [32] Gan, M., Peng, H., ping Dong, X.. A hybrid algorithm to optimize rbf network architecture and parameters for nonlinear time series prediction. Applied Mathematical Modelling 2012;36:2911-2919.
    • [33] Zhang, Z., Wang, T., Liu, X.. Melt index prediction by aggregated fRBFg neural networks trained with chaotic theory. Neurocomputing 2014;131:368-376.
    • [34] Gan, M., Peng, H.. Stability analysis of rbf network-based state-dependent autoregressive model for nonlinear time series. Applied Soft Computing 2012;12(1):174-181.
    • [35] Lee, C.M., Ko, C.N.. Time series prediction using rbf neural networks with a nonlinear time-varying evolution pso algorithm. Neurocomputing 2009;73(1-3):449-460.
    • [36] Tsekouras, G.E., Tsimikas, J.. On training rbf neural networks using input-output fuzzy clustering and particle swarm optimization. Fuzzy Sets Systems 2013;221:65-89.
    • [37] Qasem, S.N., Shamsuddin, S.M.. Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis. Applied Soft Computing 2011;11(1):1427-1438.
    • [38] Sieniutycz, S., JeÅowski, J.. 1 - brief review of static optimization methods. In: Energy Optimization in Process Systems and Fuel Cells (Second Edition). Amsterdam: Elsevier; second edition ed.; 2013, p. 1-43.
    • [39] Sun, Y., Zhang, L., Gu, X.. A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global optimization problems. Neurocomputing 2012;98(3):76-89.
    • [40] Karami, A., Johansson, R.. Choosing dbscan parameters automatically using di erential evolution. International Journal of Computer Applications 2014;91(7):1-11. Published by Foundation of Computer Science, New York, USA.
    • [41] Du, H., Zhang, N.. Time series prediction using evolving radial basis function networks with new encoding scheme. Neurocomputing 2008;71(7-9):1388-1400.
    • [42] Fathi, V., Montazer, G.A.. An improvement in fRBFg learning algorithm based on fPSOg for real time applications. Neurocomputing 2013;111:169-176.
    • [43] Montazer, G.A., Khoshniat, H., Fathi, V.. Improvement of fRBFg neural networks using fuzzy-osd algorithm in an online radar pulse classification system. Applied Soft Computing 2013;13(9):3831-3838.
    • [44] Tsekouras, G.E.. A simple and e ective algorithm for implementing particle swarm optimization in rbf network's design using input-output fuzzy clustering. Neurocomputing 2013;108:36-44.
    • [45] Kokshenev, I., Braga, A.P.. A multi-objecitve approach to rbf network learning. Neurocomputing 2008;71:1203-1209.
    • [46] Karami, A., Guerrero-Zapata, M.. A fuzzy anomaly detection system based on hybrid pso-kmeans algorithm in content-centric networks. Neurocomputing 2014;doi: http://dx.doi.org/10.1016/j.neucom.2014.08.070.
    • [47] Ka¨rkka¨inen, I., Fra¨nti, P.. Minimization of the value of daviesbouldin index. In: Proceedings of the LASTED International Conference signal proccessing and communications. Marbella, Spain; 2000, p. 426-432.
    • [48] Kuo, R.J., Syu, Y.J., Chen, Z.Y., Tien, F.C.. Integration of particle swarm optimization and genetic algorithm for dynamic clustering. Informaton Sciences 2012;195:124-140.
    • [49] Jin, Y.. Multi-Objective Machine Learning. Studies in Computational Intelligence; Springer; 2006. ISBN 9783540306764.
    • [50] Etghani, M.M., Shojaeefard, M.H., Khalkhali, A., Akbari, M.. A hybrid method of modified nsga-ii and topsis to optimize performance and emissions of a diesel engine using biodiesel. Applied Thermal Engineering 2013;59:309-315.
    • [51] Chang, P.C., Chen, S.H.. The development of a sub-population genetic algorithm ii (spga ii) for multiobjective combinatorial problems. Applied Soft Computing 2009;9(1):173-181.
    • [52] Mert, S.O., O¨ zc¸elik, Z., O¨zc¸elik, Y., Dinc¸er, I.. Multiobjective optimization of a vehicular fPEMg fuel cell system. Applied Thermal Engineering 2011;31(13):2171-2176.
    • [53] Zangooei, M.H., Habibi, J., Alizadehsani, R.. Disease diagnosis with a hybrid method fSVRg using nsga-ii. Neurocomputing 2014;136:14-29.
    • [54] Lefort, V., Knibbe, C., Beslon, G., Favrel, J.. Simultaneous optimization of weights and structure of an rbf neural network. In: Proceedings of the 7th international conference on Artificial Evolution. EA'05; Berlin, Heidelberg: Springer-Verlag; 2006, p. 49-60.
    • [55] Kokshenev, I., Braga, A.P.. An e cient multi-objective learning algorithm for rbf neural network. Neurocomputing 2010;73:2799-2808.
    • [56] Qasem, S.N., Shamsuddin, S.M., Hashim, S.Z.M., Darus, M., Al-Shammari, E.. Memetic multiobjective particle swarm optimization-based radial basis function network for classification problems. Information Sciences 2013;239:165-190.
    • [57] Carlisle, A., Dozier, G.. An o -the-shelf pso. In: Proceedings of the Particle Swarm Optimization Workshop. 2001, p. 16.
    • [58] Kennedy, J., Eberhart, R.C.. Swarm Intelligence. Morgan Kaufmann, San Francisco, CA; 2001.
    • [59] Urade, H.S., Patel, R.. Dynamic particle swarm optimization to solve multi-objective optimization problem. Procedia Technology 2012;6:283-290.
    • [60] Yi, C., Afanasyev, A., Wang, L., Zhang, B., Zhang, L.. Adaptive forwarding in named data networking. SIGCOMM Computer Communications Rev 2012;42(3):62-67.
    • [61] Yi, C., Afanasyev, A., Moiseenko, I., Wang, L., Zhang, B., Zhang, L.. A case for stateful forwarding plane. Computer Communications 2013;36(7):779-791.
    • [62] Lauinger, T.. Security & scalability of content-centric networking. 2010.
    • [63] Dai, H., Wang, Y., Fan, J., Liu, B.. Mitigate ddos attacks in ndn by interest traceback. In: 2nd IEEE International Workshop on Emerging Design Choices in Name-Oriented Networking (NOMEN 2013). Turin, Italy; 2013,.
    • [64] Broomhead, D.S., Lowe, D.. Multivariable functional interpolation and adaptive networks. Complex Systems 1998;2:321- 355.
    • [65] Hamad, A., Yu, D., Gomm, J.B., Sangha, M.S.. Radial basis function neural network in fault detection of automotive engines. In: International Journal of Engineering, Science and Technology; vol. 2. 2010, p. 1-8.
    • [66] Neruda, R., Kudova´, P.. Learning methods for radial basis function networks. Future Generation Computer Systems 2005;21(7):1131-1142.
    • [67] Tan, K.K., Tang, K.Z.. Adaptive online correction and interpolation of quadrature encoder signals using radial basis functions. IEEE Transactions on Control Systems Technology 2005;13(3):370-377.
    • [68] Bai, Y., Zhang, L.. Genetic algorithm based self-growing training for rbf neural networks. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN '02); vol. 1. 2002, p. 840-845.
    • [69] Kennedy, J., Eberhart, R.. Particle swarm optimization. In: Proceedings in IEEE International Conference Neural Networks; vol. 4. 1995, p. 1942-1948.
    • [70] Hong, X., Gao, J., Chen, S., Harris, C.J.. Particle swarm optimisation assisted classification using elastic net prefiltering. Neurocomputing 2013;122:210-220.
    • [71] Eberhart, R.C., Shi, Y.. Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the Evolutionary Computation; vol. 1. 2000, p. 84-88.
    • [72] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 2002;6(2):182-197.
    • [73] Yuso , Y., Ngadiman, M.S., Zain, A.M.. Overview of nsga-ii for optimizing machining process parameters. Procedia Engineering 2011;15:3978-3983.
    • [74] Fallah-Mehdipour, E., Haddad, O.B., Tabari, M.M.R., Mario, M.A.. Extraction of decision alternatives in construction management projects: Application and adaptation of nsga-ii and fMOPSOg. Expert Systems with Applications 2012;39(3):2794-2803.
    • [75] Chen, J., Ren, Z., Fan, X.. Particle swarm optimization with adaptive mutation and its application research in tuning of pid parameters. In: Proc. 1st International Symposium on Systems and Control in Aerospace and Astronautics. 2006, p. 990-994.
    • [76] Azad, S.K., Azad, S.K., Kulkarni, A.J.. Structural optimization using a mutation-based genetic algorithm. International journal of optimization in civil engineering 2012;2(1):80-100.
    • [77] Karami, A., Johansson, R.. Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options. Journal of Information Science and Engineering 2014;30(2):519-534.
    • [78] Davies, D.L., Bouldin, D.W.. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1979;PAMI-1(2):224-227.
    • [79] Asuncion, A., Newman, D.. UCI machine learning repository. 2007. URL http://www.ics.uci.edu/ mlearn/MLRepository.html.
    • [80] Shokrian, M., High, K.A.. Application of a multi objective multi-leader particle swarm optimization algorithm on fNLPg and fMINLPg problems. Computers & Chemical Engineering 2014;60:57-75.
    • [81] Li, N.J., Wang, W.J., Hsu, C.C.J., Chang, W., Chou, H.G., Chang, J.W.. Enhanced particle swarm optimizer incorporating a weighted particle. Neurocomputing 2014;124:218-227.
    • [82] Khare, A., Rangnekar, S.. A review of particle swarm optimization and its applications in solar photovoltaic system. Applied Soft Computing 2013;13(5):2997-3006.
    • [83] Yazdani, D., Nasiri, B., Sepas-Moghaddam, A., Meybodi, M.R.. A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization. Applied Soft Computing 2013;13(4):2144-2158.
    • [84] Thida, M., Eng, H.L., Monekosso, D.N., Remagnino, P.. A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets. Applied Soft Computing 2013;13(6):3106-3117.
    • [85] Marinakis, Y., Iordanidou, G.R., Marinaki, M.. Particle swarm optimization for the vehicle routing problem with stochastic demands. Applied Soft Computing 2013;13(4):1693-1704.
    • [86] Espezua, S., Villanueva, E., Maciel, C.D.. Towards an e - cient genetic algorithm optimizer for sequential projection pursuit. Neurocomputing 2014;123:40-48.
    • [87] Tsai, C.W., Shih, C., Wang, J.R.. Using genetic algorithms to calibrate the user-defined parameters of fIISTg model for fSBLOCAg analysis. Annals of Nuclear Energy 2014;63:499- 505.
    • [88] Faraji, R., Naji, H.R.. An e cient crossover architecture for hardware parallel implementation of genetic algorithm. Neurocomputing 2013;128:316-327.
    • [89] Fogue, M., Garrido, P., Martinez, F.J., Cano, J.C., Calafate, C.T., Manzoni, P.. A novel approach for tra c accidents sanitary resource allocation based on multi-objective genetic algorithms. Expert Systems with Applications 2013;40(1):323- 336.
    • [90] Thakur, M.. A new genetic algorithm for global optimization of multimodal continuous functions. Journal of Computational Science 2014;5(2):298-311.
    • [91] K o¨ker, R.. A genetic algorithm approach to a neuralnetwork-based inverse kinematics solution of robotic manipulators based on error minimization. Information Sciences 2013;222:528-543.
    • [92] Atashpaz-Gargari, E., Lucas, C.. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: Evolutionary Computation, 2007. CEC 2007. IEEE Congress on. IEEE; 2007, p. 4661-4667.
    • [93] Goldansaz, S.M., Jolai, F., Anaraki, A.H.Z.. A hybrid imperialist competitive algorithm for minimizing makespan in a multi-processor open shop. Applied Mathematical Modelling 2013;37(23):9603-9616.
    • [94] Enayatifar, R., Sadaei, H.J., Abdullah, A.H., Gani, A.. Imperialist competitive algorithm combined with refined high-order weighted fuzzy time series (rhwftsica) for short term load forecasting. Energy Conversion and Management 2013;76:1104- 1116.
    • [95] Venske, S.M.S., Goncalves, R.A., Delgado, M.R.. Ademo/d: Adaptive di erential evolution for multiobjective problems. In: Proceedings of the 2012 Brazilian Symposium on Neural Networks. SBRN '12; IEEE Computer Society; 2012, p. 226-231.
    • [96] de Melo, V.V., Carosio, G.L.. Investigating multiview di erential evolution for solving constrained engineering design problems. Expert Systems with Applications 2013;40(9):3370-3377.
    • [97] Mohamed, A.W., Sabry, H.Z., Abd-Elaziz, T.. Real parameter optimization by an e ective di erential evolution algorithm. Egyptian Informatics Journal 2013;14(1):37-53.
    • [98] Zhu, W., Tang, Y., an Fang, J., Zhang, W.. Adaptive population tuning scheme for di erential evolution. Information Sciences 2013;223:164-191.
    • [99] Afanasyev, A., Moiseenko, I., Zhang, L.. ndnSIM: NDN simulator for NS-3. Technical Report NDN-0005; NDN; 2012. URL named-data.net/techreports.html.
    • [100] Dfn-verein: Dfn-noc (network operation center). 2013. Retrieved Jun. 2013; URL dfn.de/dienstleistungen/dfninternet/noc.
    • [101] Heckmann, O.. The competitive Internet service provider: network architecture, interconnection, tra c engineering and network design. Wiley series in communications networking & distributed systems; J. Wiley; 2006. URL books.google.es/books?id=DyEfAQAAIAAJ.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.