Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Winstanley, E. (2001)
Publisher: American Physical Society
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: General Relativity and Quantum Cosmology
We study in detail the modes of a classical scalar field on a Kerr–Newman–anti-de Sitter (KN-AdS) black hole. We construct sets of basis modes appropriate to the two possible boundary conditions (“reflective” and “transparent”) at timelike infinity, and consider whether super-radiance is possible. If we employ “reflective” boundary conditions, all modes are non-super-radiant. On the other hand, for “transparent” boundary conditions, the presence of super-radiance depends on our definition of positive frequency. For those KN-AdS black holes having a globally time-like Killing vector, the natural choice of positive frequency leads to no super-radiance. For other KN-AdS black holes, there is a choice of positive frequency which gives no super-radiance, but for other choices there will, in general, be super-radiance.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. C. Ottewill and E. Winstanley, Phys. Rev. D62, 084018 (2000), grqc/0004022.
    • [2] V. P. Frolov and K. S. Thorne, Phys. Rev. D39, 2125 (1989).
    • [3] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, Phys. Rep. 323, 183 (2000), hep-th/9905111.
    • [4] S. W. Hawking and D. N. Page, Commun. Math. Phys. 87, 577 (1983).
    • [5] M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992), hep-th/9204099.
    • [6] M. Banados, M. Henneaux, C. Teitelboim, and J. Zanelli, Phys. Rev. D48, 1506 (1993), gr-qc/9302012.
    • [7] A. Dasgupta, Phys. Lett. B445, 279 (1999), hep-th/9808086.
    • [8] E. Keski-Vakkuri, Phys. Rev. D59, 104001 (1999), hep-th/9808037.
    • [9] H. W. Lee and Y. S. Myung, Phys. Rev. D58, 104013 (1998), hepth/9804095.
    • [10] R. B. Mann and S. N. Solodukhin, Phys. Rev. D55, 3622 (1997), hepth/9609085.
    • [11] G. Lifschytz and M. Ortiz, Phys. Rev. D49, 1929 (1994), gr-qc/9310008.
    • [12] K. Shiraishi and T. Maki, Class. Quantum Grav. 11, 695 (1994).
    • [13] A. R. Steif, Phys. Rev. D49, R585 (1994), gr-qc/9308032.
    • [14] M. M. Caldarelli, G. Cognola, and D. Klemm, Class. Quant. Grav. 17, 399 (2000), hep-th/9908022.
    • [15] S. W. Hawking, C. J. Hunter, and M. M. Taylor-Robinson, Phys. Rev. D59, 064005 (1999), hep-th/9811056.
    • [16] S. W. Hawking and H. S. Reall, Phys. Rev. D61, 024014 (1999), hepth/9908109.
    • [17] R. B. Mann, Phys. Rev. D61, 084013 (2000), hep-th/9904148.
    • [18] S. Das and R. B. Mann, J. High Energy Phys. 0008, 033 (2000), hepth/0008028.
    • [19] A. M. Awad and C. V. Johnson, Phys. Rev. D63, 124023 (2001), hepth/0008211.
    • [20] A. M. Awad and C. V. Johnson, Phys. Rev. D61, 084025 (2000), hepth/9910040.
    • [21] M. H. Dehghani and R. B. Mann, Preprint hep-th/0102001 (2001).
    • [22] S. Hemming and E. Keski-Vakkuri, Preprint gr-qc/0005115 (2000).
    • [23] A. C. Ottewill and E. Winstanley, Phys. Lett. A273, 149 (2000), grqc/0005108.
    • [24] B. S. Kay and R. M. Wald, Phys. Rep. 207, 49 (1991).
    • [25] J. Ho and G. Kang, Phys. Lett. B445, 27 (1998), gr-qc/9806118.
    • [26] M.-H. Lee, H.-C. Kim, and J. K. Kim, Phys. Lett. B388, 487 (1996), hep-th/9603072.
    • [27] W. G. Unruh, Phys. Rev. D10, 3194 (1974).
    • [28] B. S. DeWitt, Phys. Rep. 19, 295 (1975).
    • [29] S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1983).
    • [30] S. J. Avis, C. J. Isham, and D. Storey, Phys. Rev. D18, 3565 (1978).
    • [31] B. Carter, Commun. Math. Phys. 10, 280 (1968).
    • [32] M. Henneaux and C. Teitelboim, Commun. Math. Phys. 98, 391 (1985).
    • [33] B. Carter, Phys. Rev. 141, 1242 (1966).
    • [34] H. Kim, Phys. Rev. D59, 064002 (1999), gr-qc/9809047.
    • [35] R. B. Mann, in Internal Structure of Black Holes and Spacetime Singularities, No. 13 in Annals of the Israel Physical Society, Israel Physical Society, edited by L. M. Burko and A. Ori (Institute of Physics Publishing, Bristol, 1997), pp. 311-342, gr-qc/9709039.
    • [36] P. Breitenlohner and D. Z. Freedman, Ann. Phys. (N.Y.) 144, 249 (1982).
    • [37] P. Breitenlohner and D. Z. Freedman, Phys. Lett. B115, 197 (1982).
    • [38] Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965).
    • [39] G. T. Horowitz and V. E. Hubeny, Phys. Rev. D62, 024027 (2000), hep-th/9909056.
    • [40] V. Cardoso and J. P. S. Lemos, Phys. Rev. D63, 124015 (2001), grqc/0101052.
    • [41] V. Cardoso and J. P. S. Lemos, Phys. Rev. D, to appear, Preprint grqc/0105103 (2001).
    • [42] B. Wang, C.-Y. Lin, and E. Abdalla, Phys. Lett. B481, 79 (2000), hepth/0003295.
    • [43] B. Wang, C. M. Mendes, and E. Abdalla, Phys. Rev. D63, 084001 (2001), hep-th/0005143.
    • [44] J.-M. Zhu, B. Wang, and E. Abdalla, Phys. Rev. D63, 124004 (2001), hep-th/0101133.
    • [45] J. S. F. Chan and R. B. Mann, Phys. Rev. D55, 7546 (1997), grqc/9612026.
    • [46] J. S. F. Chan and R. B. Mann, Phys. Rev. D59, 064025 (1999).
    • [47] V. Balasubramanian, P. Kraus, and A. Lawrence, Phys. Rev. D59, 046003 (1999), hep-th/9805171.
    • [48] Z. Chang, C.-B. Guan, and H.-Y. Guo, Preprint hep-th/0104251 (2001).
    • [49] J. M. Bardeen, in Black Holes, edited by C. DeWitt and B. S. DeWitt (Gordon and Breach, New York, 1973).
    • [50] Black Holes: The Membrane Paradigm, edited by K. S. Thorne, R. H. Price, and D. A. Macdonald (Yale University Press, New Haven, 1986).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article