LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fadouloglou, V.E.; Tampakaki, A.P.; Glykos, N.M.; Bastaki, M.N; Hadden, J.M.; Phillips, S.E.V.; Panopoulos, N.J.; Kokkinidis, M. (2004)
Languages: English
Types: Article
Subjects:
Type III secretion systems enable plant and animal bacterial pathogens to deliver virulence proteins into the cytosol of eukaryotic host cells, causing a broad spectrum of diseases including bacteremia, septicemia, typhoid fever, and bubonic plague in mammals, and localized lesions, systemic wilting, and blights in plants. In\ud addition, type III secretion systems are also required for biogenesis of the bacterial flagellum. The HrcQ(B) protein, a component of the secretion apparatus of Pseudomonas syringae with homologues in all type III systems, has a variable N-terminal and a conserved C-terminal domain (HrcQ(B)-C). Here, we report the crystal structure\ud of HrcQ(B)-C and show that this domain retains the ability of the full-length protein to interact with other type III components. A 3D analysis of sequence conservation patterns reveals two clusters of residues potentially involved in protein–protein interactions. Based on the analogies between HrcQ(B) and its flagellum homologues,\ud we propose that HrcQ(B)-C participates in the formation of\ud a C-ring-like assembly.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Hueck, C. J. (1998) Microbiol. Mol. Biol. Rev. 62, 379-433.
    • 2. Alfano, J. R. & Collmer, A. (1997) J. Bacteriol. 179, 5655-5662.
    • 3. Gal´an, J. E. & Collmer, A. (1999) Science 284, 1322-1328.
    • 4. Bu¨ttner, D. & Bonas, U. (2000) EMBO J. 21, 5313-5322.
    • 5. Jin, Q. & He, S.-Y. (2001) Science 294, 2556-2558.
    • 6. Stebbins, C. E. & Gal´an, J. E. (2001) Nature 414, 77-81.
    • 7. Luo, Y., Bertero, M. G., Frey, E. A., Pfuetzner, R. A., Wenk, M. R., Creagh, L., Marcus, S. L., Lim, D., Sicheri, F., Kay, C., et al. (2001) Nat. Struct. Biol. 8, 1031-1036.
    • 8. Rossier, O., Wengelnik, K., Hahn, K. & Bonas, U. (1999) Proc. Natl. Acad. Sci. USA 96, 9368-9373.
    • 9. Collmer, A., Badel, J. L., Charkowski, A. O., Deng, W. L., Fouts, D. E., Ramos, A. R., Rehm, A. H., Anderson, D. M., Schneewind, O., van Dijk, K., et al. (2000) Proc. Natl. Acad. Sci. USA 97, 8770-8777.
    • 10. Anderson, D. M., Fouts, D. E., Collmer, A. & Schneewind, O. (1999) Proc. Natl. Acad. Sci. USA 96, 12839-12834.
    • 11. Fadouloglou, V. E., Tampakaki, A. P., Panopoulos, N. J. & Kokkinidis M. (2001) Acta Crystallogr. D 57, 1689-1691.
    • 12. Otwinowski, Z. & Minor, W. (1997) Methods Enzymol. 276, 307-326.
    • 13. Terwilliger, T. C. & Berendzen, J. (1999) Acta Crystallogr. D 55, 849-861.
    • 14. Terwillinger, T. C. (2000) Acta Crystallogr. D 56, 965-972.
    • 15. Bru¨nger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., et al. (1998) Acta Crystallogr. D 54, 905-921.
    • 16. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997) Acta Crystallogr. D 53 240-255.
    • 17. Garc´ıa de la Torre, J., Huertas, M. L. & Carrasco, B. (2000) Biophys. J. 78, 719-730.
    • 18. Thomson, J. D., Higgins, D. G. & Gibson, T. J. (1997) Nucleic Acids Res. 22, 4673-4680.
    • 19. Gouet, P., Courcelle, E., Stuart, D. I. & Metoz, F. (1999) Bioinformatics 15, 305-308.
    • 20. Landgraf, R., Xenarios, I. & Eisenberg, D. (2001) J. Mol. Biol. 307, 1487-1502.
    • 21. Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A., Galan, J. E. & Aizawa, S. I. (1998) Science 280, 602-605.
    • 22. Charkowski, A. O., Huang, H. C. & Collmer, A. (1997) J. Bacteriol. 179, 3866-3874.
    • 23. Francis, N. R., Sosinsky, G. E., Thomas, D. & DeRosier, D. J. (1994) J. Mol. Biol. 235, 1261-1270.
    • 24. Tang, H., Billings, S., Wang, X., Sharp, L. & Blair, D. F. (1995) J. Bacteriol. 177, 3496-3503.
    • 25. Mathews, M. A. A., Tang, H. L. & Blair, D. F. (1998) J. Bacteriol. 180, 5580-5590.
    • 26. Zhao, R., Pathak, N., Jaffe, H., Reese, T. S. & Khan, S. (1996) J. Mol. Biol. 261, 195-208.
    • 27. Lloyd, S. A., Whitby, F. G., Blair, D. F. & Hill, C. P. (1999) Nature 400, 472-475.
    • 28. Tamano, K., Aizawa, S., Katayama, E., Nonaka, T., Imajoh-Ohmi, S., Kuwae, A., Nagai, S. & Sasakawa, C. (2000) EMBO. J. 19, 3876-3887.
    • 29. McGuffin, L. J., Bryson, K. & Jones, D. T. (2000) Bioinformatics 16, 404 - 405.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

  • BioEntity Site Name
    1o9yProtein Data Bank

Share - Bookmark

Cite this article