LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sheppard, Daniel Crispin
Languages: English
Types: Doctoral thesis
Subjects: QC
The technique of medium energy ion scattering (MEIS) can be used to elucidate\ud the structural details of surfaces, both in general terms and in a more qualitative manner,\ud in order to help solve a number of outstanding uncertainties relating to the structures of\ud a number of surface systems. MEIS, involving the back-scattering of light ions from a\ud material of interest, in this case 100 keV H+ ions from adsorbate covered single crystal\ud metal surfaces, can potentially be a powerful tool for obtaining either depth-dependent\ud compositional information or quantitative structural details.\ud MEIS has been used to study the surface relaxations at the Cu(410)-O stepped\ud surface. The results have been compared to a number of models favoured by previous\ud studies, and an optimisation of the structural parameters associated with the outermost\ud Cu atoms was undertaken so as to determine the positions of these atoms to a reasonable\ud degree of precision.\ud In this thesis, MEIS has also been used to probe the surface reconstructions\ud triggered by the adsorption of the methylthiolate species on the Cu(100), Au(111) and\ud Pd(111) surfaces. Methylthiolate is derived from the n-alkylthiol molecule methylth-\ud iol, the simplest molecule of a species which ubiquitously form so called self-assembled\ud monolayers (SAMs) on single crystal metal surfaces. In the case of Cu(100), our study\ud confirms the existence of a radial lateral distortion of the outermost Cu layer, and we\ud quantify this distortion. For Au(111), two competing structural models for the methylth-\ud iolate overlayer have been proposed, namely the Au-adatom-monothiolate (AAM) and\ud Au-adatom-dithiolate (AAD). MEIS has been used to compare these two models, and we\ud find in favour of the AAD model. Additionally, evidence has been found for a significant\ud reconstruction of the Pd(111) surface triggered by adsorption of methylthiolate.\ud We have carried out a MEIS investigation of the (3×2)-alaninate phase formed\ud by adsorption of the chiral molecule alanine on Cu(110). Evidence is found for a small\ud degree of lateral surface distortion.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. D. C. Sheppard, G. S. Parkinson, A. Hentz, P. D. Quinn, M. A. Muñoz-Márquez, D. P. Woodruff, P. Bailey, and T. C. Q. Noakes, “Surface relaxation in Cu(410)-O: A medium energy ion scattering study”, Surface Science 604, 788 − 796 (2010).
    • 2. D. C. Sheppard, M. Walker, C. F. McConville, D. P. Woodruff, T. C. Q. Noakes, and P. Bailey, “Thiolate-induced lateral distortion of the Cu(100) surface”, Surface Science 604, 1727 − 1732 (2010).
    • 3. D. C. Sheppard, G. S. Parkinson, A. Hentz, A. J. Window, P. D. Quinn, D. P. Woodruff, P. Bailey, and T. C. Q. Noakes, “Medium energy ion scattering investigation of methylthiolate-induced modification of the Au(111) surface”, Submitted for publication.
    • 1. A. J. Window, A. Hentz, D. C. Sheppard, G. S. Parkinson, D. P. Woodruff, T. C. Q. Noakes, and P. Bailey, “Silver sulphide growth on Ag(111): A medium energy ion scattering study”, Surface Science 604, 1254 − 1260 (2010).
    • [1] D. P. Woodruff, Journal of Physics-Condensed Matter 22, 084016 (2010).
    • [2] J. F. van der Veen, Surface Science Reports 5, 199 (1985).
    • [3] E. J. Williams, Rev. Mod. Phys. 17, 217 (1945).
    • [4] H. Goldstein, Classical Mechanics (Addison-Wesley, 2002), 3rd ed.
    • [5] E. Rutherford, Philosophical Magazine 21, 669 (1911).
    • [6] M. Ángel Muñoz Márquez, Ph.D. thesis, University of Warwick (2005).
    • [7] D. J. O'connor and J. P. Biersack, Nuclear Instruments and Methods in Physics Research Section B 15, 14 (1986).
    • [8] G. Molière, Z Naturforsch A 2, 133 (1947).
    • [9] O. B. Firsov, Soviet Journal of Experimental and Theoretical Phyiscs 6, 534 (1958).
    • [10] J. L'Ecuyer, J. A. Davies, and N. Matsunami, Nuclear Instruments & Methods 160, 337 (1979).
    • [11] S. R. Lee and R. R. Hart, Nuclear Instruments & Methods B 79, 463 (1993).
    • [12] H. A. Bethe, Ann. Physik 5, 325 (1930).
    • [13] N. Bohr, Philosophical Magazine 25, 10 (1913).
    • [14] J. F. Ziegler, J. P. Biersack, and U. Littmark, The stopping and range of ions in solids, vol. 1 (Pergamon Press, 1985).
    • [15] W. K. Chu, Physical Review A 13, 2057 (1976).
    • [16] Q. Yang, D. J. Oconnor, and Z. G. Wang, Nuclear Instruments & Methods B 61, 149 (1991).
    • [17] N. Bohr, Kgl. Danske Videnskab. Selskab, Mat-fys. Medd. 18, 8 (1948).
    • [18] Y. Kido and T. Koshikawa, Journal of Applied Physics 67, 187 (1990).
    • [19] J. B. Marion and F. C. Young, Nuclear reaction analysis - graphs and tables (North Holland Amsterdam, 1968).
    • [20] D. S. Gemmell, Reviews of Modern Physics 46, 129 (1974).
    • [21] O. S. Oen, Surface Science 131, L407 (1983).
    • [22] J. W. M. Frenken, R. M. Tromp, and J. F. vander Veen, Nuclear Instruments & Methods in Physics Research B 17, 334 (1986).
    • [23] R. M. Tromp and J. F. van der Veen, Surface Science 133, 159 (1983).
    • [24] J. F. van der Veen, J. B. Sanders, and F. W. Saris, Surface Science 77, 337 (1978).
    • [25] R. M. Tromp, M. Copel, M. C. Reuter, M. H. von Hoegen, J. Speidell, and R. Koudijs, Review of Scientific Instruments 62, 2679 (1991).
    • [26] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, P. Canal, D. Casadei, O. Couet, V. Fine, et al., Computer Physics Communications 180, 2499 (2009).
    • [27] T. C. Q. Noakes, P. Bailey, and D. P. Woodruff, Nuclear Instruments & Methods B 136, 1125 (1998).
    • [28] D. P. Woodruff, D. Brown, P. D. Quinn, T. C. Q. Noakes, and P. Bailey, Nuclear Instruments & Methods B 183, 128 (2001).
    • [30] G. S. Parkinson, M. A. M. noz Márquez, P. D. Quinn, M. J. Gladys, R. E. Tanner, and D. P. Woodruff, Physical Review B 73, 245409 (2006).
    • [31] P. Quinn, D. Brown, D. P. Woodruff, T. C. Q. Noakes, and P. Bailey, Surface Science 491, 208 (2001).
    • [32] G. S. Parkinson, Ph.D. thesis, University of Warwick (2006).
    • [33] R. Fletcher, Practical methods of optimisation (Wiley, Chichester, 1987), 2nd ed.
    • [34] P. E. Gill, W. Murray, and M. H. Wright, Practical optimisation (Academic Press, London, 1981).
    • [35] P. Gilmore and C. T. Kelley, SIAM Journal on Optimization 5, 269 (1995).
    • [36] C. Davisson and L. H. Germer, Physical Review 30, 705 (1927).
    • [37] D. P. Woodruff and T. A. Delchar, Modern Techniques of Surface Science (Cambridge University Press, 1994), 2nd ed.
    • [38] M. A. V. Hove, W. H. Weinberg, and C. M. Chan, Low energy electron diffraction (Springer-Verlag Berlin Heidelberg, 1986).
    • [39] M. Thompson, M. D. Baker, A. Christie, and J. F. Tyson, Auger electron spectroscopy (John Wiley & Sons, 1985).
    • [40] H. Wagner, Solid Surface Physics (Springer Berlin/Heidelberg, 1979), chap. Physical and chemical properties of stepped surfaces, Springer Tracts in Modern Physics.
    • [41] G. Rhead, Surface Science 68, 20 (1977).
    • [42] P. Knight, S. Driver, and D. Woodruff, Journal of Physics-Condensed Matter 9, 21 (1997).
    • [43] G. Lloyd and D. Woodruff, Surface Science 285, L503 (1993).
    • [44] J. Perdereau and G. Rhead, Surface Science 24, 555 (1971).
    • [45] S. Reiter and E. Taglauer, Surface Science 367, 33 (1996).
    • [46] I. Robinson, E. Vlieg, and S. Ferrer, Physical Review B 42, 6954 (1990).
    • [47] M. Sotto, Surface Science 260, 235 (1992).
    • [48] L. Trepte, C. Menzel-Kopp, and E. Menzel, Surface Science 8, 223 (1967).
    • [49] P. J. Knight, S. M. Driver, and D. P. Woodruff, Surface Science 376, 374 (1997).
    • [50] P. J. Knight, S. M. Driver, and D. P. Woodruff, Chemical Physics Letters 259, 503 (1996).
    • [51] A. Chaika and S. Bozhko, JETP Letters 82, 416 (2005).
    • [52] S. Murphy, K. Radican, I. V. Shvets, A. N. Chaika, V. N. Semenov, S. S. Nazin, and S. I. Bozhko, Physical Review B 76, 245423 (2007).
    • [53] K. Thompson and C. Fadley, Surface Science 146, 281 (1984).
    • [54] C. Cohen, A. L'Hoir, J. Moulin, D. Schmaus, M. Sotto, J. L. Domange, and J. C. Boulliard, Surface Science 339, 41 (1995).
    • [55] E. Vlieg, S. M. Driver, P. Goedtkindt, P. J. Knight, W. Liu, J. LÃijdecke, K. A. R. Mitchell, V. Murashov, I. K. Robinson, S. A. de Vries, et al., Surface Science 516, 16 (2002).
    • [56] D. A. Walko and I. K. Robinson, Surf. Rev. Lett. 6, 851 (1999).
    • [57] D. A. Walko and I. K. Robinson, Physical Review B 59, 15446 (1999).
    • [58] M. Asensio, M. Ashwin, A. Kilcoyne, D. Woodruff, A. Robinson, T. Lindner, J. Somers, D. Ricken, and A. Bradshaw, Surface Science 236, 1 (1990).
    • [59] M. Kittel, M. Polcik, R. Terborg, J. T. Hoeft, P. BaumgÃďrtel, A. M. Bradshaw, R. L. Toomes, J. H. Kang, D. P. Woodruff, M. Pascal, et al., Surface Science 470, 311 (2001).
    • [60] W. Liu, K. Wong, H. Zeng, and K. Mitchell, Prog. Surf. Sci. 50, 247 (1995).
    • [61] H. Zeng, R. McFarlane, and K. Mitchell, Surface Science 208, L7 (1989).
    • [62] A. Atrie, U. Bardi, G. Casalone, G. Rovida, and E. Zanazzi, Vacuum 41, 333 (1990).
    • [64] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chemical Reviews 105, 1103 (2005).
    • [65] F. Schreiber, Progress in Surface Science 65, 151 (2000).
    • [66] A. Ulman, Chemical Reviews 96, 1533 (1996).
    • [67] C. Vericat, M. E. Vela, and R. C. Salvarezza, Physical Chemistry Chemical Physics 7, 3258 (2005).
    • [68] R. A. van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, and B. L. Feringa, Nature 437, 1337 (2005).
    • [69] L. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S. W. Chung, and C. A. Mirkin, Science 296, 1836 (2002).
    • [70] T. Otsubo, Y. Aso, and K. Takimiya, Journal of Materials Chemistry 12, 2565 (2002).
    • [71] D. P. Woodruff, Physical Chemistry Chemical Physics 10, 7211 (2008).
    • [72] N. P. Prince, D. L. Seymour, D. P. Woodruff, R. G. Jones, and W. Walter, Surface Science 215, 566 (1989).
    • [73] S. M. Driver and D. P. Woodruff, Surface Science 457, 11 (2000).
    • [74] G. S. Parkinson, M. A. M. noz Márquez, P. D. Quinn, M. J. Gladys, D. P. Woodruff, P. Bailey, and T. C. Q. Noakes, Surface Science 598, 209 (2005).
    • [75] S. M. Driver and D. P. Woodruff, Langmuir 16, 6693 (2000).
    • [76] H. Rieley, G. K. Kendall, A. Chan, R. G. Jones, J. Ludecke, D. P. Woodruff, and B. C. C. Cowie, Surface Science 392, 143 (1997).
    • [77] D. P. Woodruff, Journal of Physics-Condensed Matter 6, 6067 (1994).
    • [78] A. Ferral, E. M. Patrito, and P. Paredes-Olivera, Journal of Physical Chemistry B 110, 17050 (2006).
    • [79] A. Soon, L. Wong, M. Lee, M. Todorova, B. Delley, and C. Stampfl, Surface Science 601, 4775 (2007).
    • [80] A. Imanishi, S. Takenaka, T. Yokoyama, Y. Kitajima, and T. Ohta, Journal de Physique IV 7, 701 (1997).
    • [81] M. S. Kariapper, C. Fisher, D. P. Woodruff, B. C. C. Cowie, and R. G. Jones, Journal of Physics-Condensed Matter 12, 2153 (2000).
    • [82] H. Kondoh, N. Saito, F. Matsui, T. Yokoyama, T. Ohta, and H. Kuroda, Journal of Physical Chemistry B 105, 12870 (2001).
    • [83] T. Tsuduki, A. Imanishi, K. Isawa, S. Terada, F. Matsui, M. Kiguchi, T. Yokoyama, and T. Ohta, Journal of Synchrotron Radiation 6, 787 (1999).
    • [84] F. Allegretti, F. Bussolotti, D. P. Woodruff, V. Dhanak, M. Beccari, V. D. Castro, M. G. Betti, and C. Mariani, Surface Science 602, 2453 (2008).
    • [85] F. Allegretti, D. P. Woodruff, V. R. Dhanak, C. Mariani, F. Bussolotti, and S. D'Addato, Surface Science 598, 253 (2005).
    • [86] S. M. Driver and D. P. Woodruff, Surface Science 488, 207 (2001).
    • [87] Q. T. Jiang, P. Fenter, and T. Gustafsson, Physical Review B 44, 5773 (1991).
    • [88] H. L. Davis and J. R. Noonan, Surface Science 126, 245 (1983).
    • [89] S. Walter, V. Blum, I. Hammer, S. Muller, K. Heinz, and M. Giesen, Surface Science 458, 155 (2000).
    • [90] C. C. Bahr, J. J. Barton, Z. Hussain, S. W. Robey, J. G. Tobin, and D. A. Shirley, Physical Review B 35, 3773 (1987).
    • [91] H. C. Zeng, R. A. McFarlane, and K. A. R. Mitchell, Canadian Journal of Physics 68, 353 (1990).
    • [92] H. C. Zeng, R. A. McFarlane, and K. A. R. Mitchell, Physical Review B 39, 8000 (1989).
    • [93] E. Vlieg, I. K. Robinson, and R. McGrath, Physical Review B 41, 7896 (1990).
    • [94] Q. T. Jiang, P. Fenter, and T. Gustafsson, Physical Review B 42, 9291 (1990).
    • [95] H. Grönbeck, A. Curioni, and W. Andreoni, Journal of the American Chemical Society 122, 3839 (2000).
    • [96] H. Sellers, A. Ulman, Y. Shnidman, and J. Eilers, Journal of the American Chemical Society 115, 9389 (1993).
    • [97] M. Tachibana, K. Yoshizawa, A. Ogawa, H. Fujimoto, and R. Hoffmann, Journal of Physical Chemistry B 106, 12727 (2002).
    • [98] Y. Yourdshahyan, H. K. Zhang, and A. M. Rappe, Physical Review B 63, 081405 (2001).
    • [99] J. Gottschalck and B. Hammer, Journal of Chemical Physics 116, 784 (2002).
    • [100] T. Hayashi, Y. Morikawa, and H. Nozoye, Journal of Chemical Physics 114, 7615 (2001).
    • [101] M. C. Vargas, P. Giannozzi, A. Selloni, and G. Scoles, Journal of Physical Chemistry B 105, 9509 (2001).
    • [102] Y. Akinaga, T. Nakajima, and K. Hirao, Journal of Chemical Physics 114, 8555 (2001).
    • [103] Y. Morikawa, T. Hayashi, C. C. Liew, and H. Nozoye, Surface Science 507, 46 (2002).
    • [104] H. Kondoh, M. Iwasaki, T. Shimada, K. Amemiya, T. Yokoyama, T. Ohta, M. Shimomura, and S. Kono, Physical Review Letters 90, 066102 (2003).
    • [105] M. G. Roper, M. P. Skegg, C. J. Fisher, J. J. Lee, V. R. Dhanak, D. P. Woodruff, and R. G. Jones, Chemical Physics Letters 389, 87 (2004).
    • [106] P. Maksymovych, D. C. Sorescu, and J. J. T. Yates, Physical Review Letters 97, 146103 (2006).
    • [107] M. Yu, N. Bovet, C. J. Satterley, S. Bengio, K. R. J. Lovelock, P. K. Milligan, R. G. Jones, D. P. Woodruff, and V. Dhanak, Physical Review Letters 97, 166102 (2006).
    • [108] F. P. Cometto, P. Paredes-Olivera, and V. A. M. E. M. Patrito, Journal of Physical Chemistry B 109, 21737 (2005).
    • [109] H. Grönbeck and H. Häkkinen, Journal of Physical Chemistry B 111, 3325 (2007).
    • [110] A. Chaudhuri, D. C. Jackson, T. J. Lerotholi, R. G. Jones, T. L. Lee, B. Detlefs, and D. P. Woodruff, Physical Chemistry Chemical Physics 12, 3229 (2010).
    • [111] D. C. Jackson, A. Chaudhuri, T. J. Lerotholi, D. P. Woodruff, R. G. Jones, and V. R. Dhanak, Surface Science 603, 807 (2009).
    • [112] A. Chaudhuri, M. Odelius, R. G. Jones, T. L. Lee, B. Detlefs, and D. P. Woodruff, Journal of Chemical Physics 130, 124708 (2009).
    • [113] A. Chaudhuri, T. J. Lerotholi, D. C. Jackson, D. P. Woodruff, and V. Dhanak, Physical Review Letters 102, 126101 (2009).
    • [114] A. Chaudhuri, T. J. Lerotholi, D. C. Jackson, D. P. Woodruff, and V. R. Dhanak, Surface Science 604, 227 (2010).
    • [115] H. Grönbeck and M. Odelius, Physical Review B 82, 085416 (2010).
    • [116] O. Voznyy, J. J. Dubowski, J. J. T. Yates, and P. Maksymovych, Journal of the American Chemical Society 131, 12989 (2009).
    • [117] F. Li, L. Tang, W. Zhou, and Q. Guo, Journal of the American Chemical Society 132, 13059 (2010).
    • [122] K. G. Huang, D. Gibbs, D. M. Zehner, A. R. Sandy, and S. G. J. Mochrie, Physical Review Letters 65, 3313 (1990).
    • [123] G. S. Parkinson, A. Hentz, P. D. Quinn, A. J. Window, D. P. Woodruff, P. Bailey, and T. C. Q. Noakes, Surface Science 601, 50 (2007).
    • [127] M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, Nature 404, 376 (2000).
    • [128] R. Raval, Chemical Society Reviews 38, 707 (2009).
    • [129] S. M. Barlow, S. Louafi, D. L. Roux, J. Williams, C. Muryn, S. Haq, and R. Raval, Surface Science 590, 243 (2005).
    • [130] S. M. Barlow, K. J. Kitching, S. Haq, and N. V. Richardson, Surface Science 401, 322 (1998).
    • [131] R. B. Rankin and D. S. Sholl, Surface Science 574, L1 (2005).
    • [132] D. I. Sayago, M. Polcik, G. Nisbet, C. L. A. Lamont, and D. P. Woodruff, Surface Science 590, 76 (2005).
    • [133] S. Haq, A. Massey, N. Moslemzadeh, A. Robin, S. M. Barlow, and R. Raval, Langmuir 23, 10694 (2007).
    • [138] J. C. Love, D. B. Wolfe, R. Haasch, M. L. Chabinyc, K. E. Paul, G. M. Whitesides, and R. G. Nuzzo, Journal of the American Chemical Society 125, 2597 (2003).
    • [139] S. Speller, T. Rauch, J. Bomermann, P. Borrmann, and W. Heiland, Surface Science 441, 107 (1999).
    • [140] P. J. Rous, M. A. V. Hove, and G. A. Somorjai, Surface Science 226, 15 (1990).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article