LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nichols, A.; Tait, S.; Horoshenkov, K.; Shepherd, S. (2016)
Publisher: Taylor & Francis
Languages: English
Types: Article
Subjects:
Understanding the dynamic free surface of geophysical flows has the potential to enable direct inference of the flow properties based on measurements of the free surface. An important step is to understand the inherent response of free surfaces in depth-limited flows. Here a model is presented to demonstrate that free surface oscillatory spatial correlation patterns result from individual surface features oscillating vertically as they advect over space and time. Comparison with laboratory observations shows that these oscillating surface features can be unambiguously explained by simple harmonic motion, whereby the oscillation frequency is controlled by the root-mean-square water surface fluctuation, and to a lesser extent the surface tension. This demonstrates that the observed “complex” wave pattern can be simply described as an ensemble of spatially and temporally distributed oscillons. Similarities between the oscillon frequency and estimated frequency of near-bed bursting events suggest that oscillon behavior is linked with the creation of coherent flow structures.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Best, J. L., & Kostaschuk, R. A. (2002). An experimental study of turbulent flow over a low angle dune. Journal of Geophysical Research, 107(C9), 18-1-18-19. doi:10.1029/ 2000JC000294
    • Buffin-Bélanger, T., Roy, A. G., & Kirkbride, A. D. (2000). On large-scale flow structures in a gravel-bed river. Geomorphology, 32, 417-435. doi:10.1016/S0169-555X(99)00106-3
    • Dabiri, D. (2003). On the interaction of a vertical shear layer with a free surface. Journal of Fluid Mechanics, 480, 217- 232. doi:10.1017/S0022112002003671
    • Eggers, J., & Riecke, H. (1999). Continuum description of vibrated sand. Physical Review E, 59(4), 4476-4483. doi:10.1103/PhysRevE.59.4476
    • Fujita, I., Furutani, Y., & Okanishi, T. (2011). Advection features of water surface profile in turbulent open-channel flow with hemisphere roughness elements. Visualization of Mechanical Processes, 1(3). doi:10.1615/VisMechProc. v1.i3.70
    • Guo, X., & Shen, L. (2010). Interaction of a deformable free surface with statistically steady homogeneous turbulence. Journal of Fluid Mechanics, 658, 33-62. doi:10.1017/S002211 2010001539
    • Horoshenkov, K. V., Nichols, A., Tait, S. J., & Maximov, G. A. (2013). The pattern of surface waves in a shallow free surface flow. Journal of Geophysical Research: Earth Surface, 118(3), 1864-1876. doi:10.1002/jgrf.20117
    • Johnson, E. D., & Cowen, E. A. (2014). Remote monitoring of volumetric discharge based on surface mean and turbulent metrics. In A. J. Schleiss, G. de Cesare, M. J. Franca, & M. Pfister (Eds.), River Flow 2014 (pp. 1935-1941). London: CRC Press.
    • Krynkin, A., Horoshenkov, K. V., Nichols, A., & Tait, S. J. (2014). A non-invasive acoustical method to measure the mean roughness height of the free surface of a turbulent shallow water flow. Review of Scientific Instruments, 85(11), 114902. doi:10.1063/1.4901932
    • Nakagawa, H., & Nezu, I. (1981). Structure of space-time correlations of bursting phenomena in an open-channel flow. Journal of Fluid Mechanics, 104, 1-43. doi:10.1017/ S0022112081002796
    • Nelder, J., & Mead, R. (1965). A simplex method for function minimisation. The Computer Journal, 7, 308-313. doi:10.1093/comjnl/7.4.308
    • Nezu, I., & Nakagawa, H. (1993). Turbulence in open-channel flows. Rotterdam: Balkema.
    • Nikora, V., & Goring, D. (2000a). Eddy convection velocity and Taylor's hypothesis of 'frozen' turbulence in a rough-bed open-channel flow. Journal of Hydroscience and Hydraulic Engineering (JSCE), 18, 75-91.
    • Nikora, V., & Goring, D. (2000b). Flow turbulence over fixed and weakly mobile gravel beds. Journal of Hydraulic Engineering, 126(9), 679-690. doi:10.1061/(ASCE)0733-9429 (2000)126:9(679)
    • Rothman, D. H. (1998). Oscillons, spiral waves, and stripes in a model of vibrated sand. Physical Review E, 57(2), R1239- R1242. doi:10.1103/PhysRevE.57.R1239
    • Roussinova, V., Biswas, N., & Balachandar, R. (2010). Revisiting turbulence in smooth uniform open channel flow. Journal of Hydraulic Research, 46(2), 36-48. doi:10.1080/ 00221686.2008.9521938
    • Roy, A. G., Buffin-Bélanger, T., Lamarre, H., & Kirkbride, A. D. (2004). Size, shape and dynamics of large-scale turbulent flow structures in a gravel-bed river. Journal of Fluid Mechanics, 500, 1-27. doi:10.1017/S002211200300 6396
    • Savelsberg, R., & van de Water, W. (2009). Experiments on free surface turbulence. Journal of Fluid Mechanics, 619, 95-125. doi:10.1017/S0022112008004369
    • Shats, M., Xia, H., & Punzmann, H. (2012). Parametrically excited water surface ripples as ensembles of oscillons. Physical Review Letters, 108, 034502. doi:10.1103/PhysRevLett. 108.034502
    • Shvidchenko, A. B., & Pender, G. (2001). Macroturbulent structure of open-channel flow over gravel beds. Water Resources Research, 37(3), 709-719. doi:10.1029/2000WR 900280
    • Tamburrino, A., & Gulliver, J. S. (2007). Free surface visualization of streamwise vortices in a channel flow. Water Resources Research, 43. doi:10.1029/2007WR005988
    • Taylor, G. I. (1938) The spectrum of turbulence. Proceedings of the Royal Society A, 164, 476-490. doi:10.1098/rspa.1938. 0032
    • Umbanhowar, P. B., Melo, F., & Swinney, H. L. (1996). Localized excitations in a vertically vibrated granular layer. Nature, 382, 793-796. doi:10.1038/382793a0
    • Ursell, F. (1949). On the heaving motion of a circular cylinder on the surface of a fluid. The Quarterly Journal of Mechanics and Applied Mathematics, 2(2), 218-231. doi:10.1093/ qjmam/2.2.218
    • Walker, D. T., Leighton, R. I., & Garza-Rios, L. O. (1996). Shear-free turbulence near a flat free surface. Journal of Fluid Mechanics, 320, 19-51. doi:10.1017/S0022112096007446
    • Ward, S. N., & Asphaug, E. (2000). Asteroid impact tsunami: A probabilistic hazard assessment. Icarus, 145(1), 64-78. doi:10.1006/icar.1999.6336
    • Yalin, M. S. (1992). River mechanics. Oxford: Pergamon Press.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article