Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hine, Nicholas; Dziedzic, Jacek; Haynes, Peter D.; Skylaris, Chris-Kriton (2011)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: Physics - Chemical Physics, QD, Physics - Computational Physics
We present a comparison of methods for treating the electrostatic interactions of finite, isolated systems within periodic boundary conditions (PBCs), within density functional theory(DFT), with particular emphasis on linear-scaling (LS) DFT. Often, PBCs are not physically realistic but are an unavoidable consequence of the choice of basis set and the efficacy of using Fourier transforms to compute the Hartree potential. In such cases the effects of PBCs on the calculations need to be avoided, so that the results obtained represent the open rather than the periodic boundary. The very large systems encountered in LS-DFT make the demands of the supercell approximation for isolated systems more difficult to manage, and we show cases where the open boundary (infinite cell) result cannot be obtained from extrapolation of calculations from periodic cells of increasing size. We discuss, implement, and test three very different approaches for overcoming or circumventing the effects of PBCs: truncation of the Coulomb interaction combined with padding of the simulation cell, approaches based on the minimum image convention, and the explicit use of open boundary conditions (OBCs). We have implemented these approaches in the ONETEP LS-DFT program and applied them to a range of systems, including a polar nanorod and a protein. We compare their accuracy, complexity, and rate of convergence with simulation cell size. We demonstrate that corrective approaches within PBCs can achieve the OBC result more efficiently and accurately than pure OBC approaches.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
    • 2W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
    • 3S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).
    • 4W. Yang, Phys. Rev. A 44, 7823 (1991).
    • 5G. Galli and M. Parrinello, Phys. Rev. Lett. 69, 3547 (1992).
    • 6X. P. Li, R. W. Nunes, and D. Vanderbilt, Phys. Rev. B 47, 10891 (1993).
    • 7P. Ordejón, D. A. Drabold, R. M. Martin, and M. P. Grumbach, Phys. Rev. B 51, 1456 (1995).
    • 8E. Hernandez and M. J. Gillan, Phys. Rev. B 51, 10157 (1995).
    • 9R. Baer and M. Head-Gordon, Phys. Rev. Lett. 79, 3962 (1997).
    • 10J. L. Fattebert and J. Bernholc, Phys. Rev. B 62, 1713 (2000).
    • 11C. K. Skylaris, A. A. Mostofi, P. D. Haynes, O. Diéguez, and M. C. Payne, Phys. Rev. B 66, 035119 (2002).
    • 12Y. Liu, D. A. Yarne, and M. E. Tuckerman, Phys. Rev. B 68, 125110 (2003).
    • 13T. Ozaki, Phys. Rev. B 74, 245101 (2006).
    • 14R. Takayama, T. Hoshi, T. Sogabe, S. L. Zhang, and T. Fujiwara, Phys. Rev. B 73, 165108 (2006).
    • 15M. J. Gillan, D. R. Bowler, A. S. Torralba, and T. Miyazaki, Comp. Phys. Comm. 177, 14 (2007).
    • 16A. M. N. Niklasson, in Linear-Scaling Techniques in Computational Chemistry and Physics, edited by R. Zalesny, M. G. Papadopoulos, P. G. Mezey, and J. Leszczynski (Springer Netherlands, Dordrecht, 2011) pp. 439-473.
    • 17E. H. Rubensson, E. Rudberg, and P. Salek, in LinearScaling Techniques in Computational Chemistry and Physics, edited by R. Zalesny, M. G. Papadopoulos, P. G. Mezey, and J. Leszczynski (Springer Netherlands, Dordrecht, 2011) pp. 263-300.
    • 18M. L. Cohen, M. Schlüter, J. R. Chelikowsky, and S. G. Louie, Phys. Rev. B 12, 5575 (1975).
    • 19J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409 (1979).
    • 20M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
    • 21R. Hockney and J. Eastwood, Computer Simulation Using Particles (McGraw-Hill Inc.,US, 1981).
    • 22M. Leslie and M. J. Gillan, J. Phys. C: Solid State Physics 18, 973 (1985).
    • 23G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).
    • 24M. R. Jarvis, I. D. White, R. W. Godby, and M. C. Payne, Phys. Rev. B 56, 14972 (1997).
    • 25L. N. Kantorovich, Phys. Rev. B 60, 15476 (1999).
    • 26L. Bengtsson, Phys. Rev. B 59, 12301 (1999).
    • 27G. J. Martyna and M. E. Tuckerman, J. Chem. Phys. 110, 2810 (1999).
    • 28H. Nozaki and S. Itoh, Phys. Rev. E 62, 1390 (2000).
    • 29P. A. Schultz, Phys. Rev. Letters 84, 1942 (2000).
    • 30A. Castro, A. Rubio, and M. J. Stott, Canadian Journal of Physics 81, 1151 (2003).
    • 31C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, Phys. Rev. B 73, 205119 (2006).
    • 32L. Genovese, T. Deutsch, A. Neelov, S. Goedecker, and G. Beylkin, J. Chem. Phys. 125, 074105 (2006).
    • 33S. Ismail-Beigi, Phys. Rev. B 73, 233103 (2006).
    • 34A. F. Wright and N. A. Modine, Phys. Rev. B 74, 235209 (2006).
    • 35L. Genovese, T. Deutsch, and S. Goedecker, J. Chem. Phys. 127, 054704 (2007).
    • 36I. Dabo, B. Kozinsky, N. E. Singh-Miller, and N. Marzari, Phys. Rev. B 77, 115139 (2008).
    • 37L. Yu, V. Ranjan, W. Lu, J. Bernholc, and M. B. Nardelli, Phys. Rev. B 77, 245102 (2008).
    • 38Y. Bar-Yam and J. D. Joannopoulos, Phys. Rev. B 30, 1844 (1984).
    • 39T. L. Beck, Rev. Mod. Phys. 72, 1041 (2000).
    • 40U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid (Academic Press, 2001) p. 631.
    • 41A. Brandt, Math. Comp. 31, 333 (1977).
    • 42C. K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, J. Chem. Phys. 122, 084119 (2005).
    • 43C. K. Skylaris, A. A. Mostofi, P. D. Haynes, O. Dieguez, and M. C. Payne, Phys. Rev. B 66, 035119 (2002).
    • 44C. K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, phys. stat. sol. (b) 243, 973-988 (2006).
    • 45C. Skylaris and P. D. Haynes, J. Chem. Phys. 127, 164712 (2007).
    • 46N. D. M. Hine, M. Robinson, P. D. Haynes, C. Skylaris, M. C. Payne, and A. A. Mostofi, Phys. Rev. B 83, 195102 (2011).
    • 47N. D. M. Hine, P. D. Haynes, A. A. Mostofi, C. K. Skylaris, and M. C. Payne, Comput. Phys. Commun. 180, 1041-1053 (2009).
    • 48N. D. M. Hine, P. D. Haynes, A. A. Mostofi, and M. C. Payne, J. Chem. Phys. 133, 114111 (2010).
    • 49M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, USA, 1989).
    • 50M. A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio, Comput. Phys. Commun. 151, 60 (2003).
    • 51A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen, M. A. L. Marques, E. K. U. Gross, and A. Rubio, phys. stat. sol. (b) 243, 2465 (2006).
    • 52A. J. Williamson, G. Rajagopal, R. J. Needs, L. M. Fraser, W. M. C. Foulkes, Y. Wang, and M. Chou, Phys. Rev. B 55, R4851 (1997).
    • 53P. R. C. Kent, R. Q. Hood, A. J. Williamson, R. J. Needs, W. M. C. Foulkes, and G. Rajagopal, Phys. Rev. B 59, 1917 (1999).
    • 54G. Deslauriers and S. Dubuc, Constructive Approx. 5, 49 (1989).
    • 55S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
    • 56N. Saito and G. Beylkin, IEEE Transactions on Signal Processing 41, 3584 (1993).
    • 57H. Helal, Including solvent effects in first-principles simulations of biological systems, Ph.D. thesis, University of Cambridge (2010).
    • 58J. R. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. Lett. 72, 1240 (1994).
    • 59S. Schaffer, Math. Comp. 43, 89 (1984).
    • 60D. A. Scherlis, J.-L. Fattebert, F. Gygi, M. Cococcioni, and N. Marzari, J. Chem. Phys 124, 074103 (2006).
    • 61J. Dziedzic, H. H. Helal, C. Skylaris, A. A. Mostofi, and M. C. Payne, Europhys. Lett. 95, 43001 (2011).
    • 62S. E. Boyce, D. L. Mobley, G. J. Rocklin, A. P. Graves, K. A. Dill, and B. K. Shoichet, J. Mol. Biol. 394, 747 (2009).
    • 63P. W. Avraam, N. D. M. Hine, P. Tangney, and P. D. Haynes, Phys. Rev. B 83, 241402 (2011).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • RCUK | Development of wide-rangin...
  • RCUK | Expanding the scope and sc...

Cite this article