Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mandle, Richard; Goodby, John William (2016)
Languages: English
Types: Article
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Demus D. One hundred years of liquid crystal chemistry - thermotropic liquid crystals with conventional and unconventional structure. Liq Cryst. 1989;5:75-110. doi:10.1080/02678298908026353.
    • 2. Goodby JW, Gray GW. Molecular structure and the polymorphism of smectic liquid crystals. J Phys (Paris). 1976;37:C3-17- C3-26. doi:10.1051/jphyscol:1976303.
    • 3. Goodby JW. The nanoscale engineering of nematic liquid crystals for displays. Liq Cryst. 2011;38:1363- 1387. doi:10.1080/02678292.2011.614700.
    • 4. Reiffenrath V, Krause J, Plach HJ, et al. New liquidcrystalline compounds with negative dielectric anisotropy. Liq Cryst. 1989;5:159-170. doi:10.1080/ 02678298908026359.
    • 5. Hird M, Goodby JW, Toyne KJ. Nematic materials with negative dielectric anisotropy of display applications. Proc SPIE. 2000;3955:15-23. doi:10.1117/12.379979.
    • 6. Gasowska JS, Cowling SJ, Cockett MCR, et al. The influence of an alkenyl terminal group on the mesomorphic behaviour and electro-optic properties of fluorinated terphenyl liquid crystals. J Mater Chem. 2009;20:299-307. doi:10.1039/b914260f.
    • 7. Kirsch P, Bremer M, Heckmeier M, et al. Liquid crystals based on hypervalednt sulfur fluorides: pentafluorsulfuranyl as a polar terminal group. Angew Chem Int Ed. 1999;38:1989-1992. doi:10.1002/(SICI)1521-3773 (19990712)38:13/14<1989::AID-ANIE1989>3.0.CO;2-.
    • 8. Jankowiak A, Ringstrand B, Janusko A, et al. Liquid crystals with negative dielectric anisotropy: the effect of unsaturation in the terminal chain on thermal and electro-optical properties. Liq Cryst. 2013;5:605-615. doi:10.1080/02678292.2013.774064O.
    • 9. Jang JY, Park YW. Synthesis and structural studies of smectic C mesogens with terminal perfluoroalkyl chains. Liq Cryst. 2013;40:511-515. doi:10.1080/ 02678292.2012.761356.
    • 10. Tani C. Novel electro-optical storage effect in a certain smectic liquid crystal. Appl Phys Lett. 1971;19:241-242. doi:10.1063/1.1653902.
    • 11. Hareng M, Le Berre S. Defects - applications to display devices thermal relaxation recording device on smectic liquid crystals. J Phys Coll. 1976;C3-135-C3-136. doi:10.1051/jphyscol:1976326.
    • 12. Coates D, Crossland WA, Morrisy JH, et al. Electrically induced scattering textures in smectic a phases and their electrical reversal. J Phys D: Appl Phys. 1978;11:2025- 2034. doi:10.1088/0022-3727/11/14/012.
    • 13. Khosla S, Raina KK, Coles HJ. Electrically induced storage effects in smectic A phase of dyed low molar mass siloxane liquid crystals. Curr Appl Phys. 2003;3:135- 140. doi:10.1016/S1567-1739(02)00191-8.
    • 14. Gheorghiu N, West JL, Glushchenko AV, et al. Patterned field induced polymer walls for smectic A bistable flexible displays. Appl Phys Lett. 2006;88:263511-1-263511-4. doi:10.1063/1.2218274.
    • 15. Gardiner DJ, Coles HJ. Organosiloxane liquid crystals for fast-switching bistable scattering devices. J Phys D: Appl Phys. 2006;39:4948-4955. doi:10.1088/0022-3727/ 39/23/008.
    • 16. Gardiner DJ, Davenport CJ, Newton J, et al. Electrooptic bistability in organosiloxane bimesogenic liquid crystals. J Appl Phys. 2006;99:113517-1-113517-4. doi:10.1063/1.2203391.
    • 17. Gardiner DJ, Coles HJ. Highly anisotropic conductivity in organosiloxane liquid crystals. J Appl Phys. 2006;39:4948-4955. doi:10.1063/1.2398081.
    • 18. Chen H-Y, Shao R, Korblova E, et al. A bistable liquidcrystal display mode based on electrically driven smectic A layer reorientation. Appl Phys Lett. 2007;91:163506- 1-163506-4. doi:10.1063/1.2799742.
    • 19. Chen H-Y, Shao R, Korblova E, et al. Bistable SmA liquid-crystal display driven by a two-direction electric field. J Soc Info Display. 2008;16:675-681. doi:10.1889/ 1.2938869.
    • 20. Gardiner DJ, Morris SM, Coles HJ. High-efficiency multistable switchable glazing using smectic A liquid crystals. Sol Energ Mat Sol Cells. 2009;93:301-306. doi:10.1016/j.solmat.2008.10.023.
    • 21. Chen H-Y, Wu J-S. A multistable smectic-A liquidcrystal device with low threshold field. J Soc Info Display. 2010;18:415-420. doi:10.1889/JSID18.6.415.
    • 22. Lu Y, Guo J, Wang H, et al. Flexible bistable smectic-A liquid crystal device using photolithography and photoinduced phase separation. Adv In Cond Mat Phys. 2012. doi:10.1155/2012/843264.
    • 23. Chen C-H, Zyryanov VY, Lee W. Switching of defect modes in a photonic structure with a tristable smectic-A liquid crystal. Appl Phys Express. 2012;5:082003-1- 082003-3. doi:10.1155/2012/843264.
    • 24. Lu Y, Wei J, Shi Y, et al. Effects of fabrication condition on the network morphology and electro-optical characteristics of a polymer-dispersed bistable smectic A liquid-crystal device. Liq Cryst. 2013;40:581-588. doi:10.1080/02678292.2013.776708.
    • 25. Gardiner DJ, Coles HJ. High-solubility liquid crystal dye guest-host device. Proc SPIE. 2007;6587. DOI:10.1117/ 12.723041
    • 26. Deshmukh RR, Jain AK. The complete morphological, electro-optical and dielectric study of dichroic dyedoped polymer-dispersed liquid crystal. Liq Cryst. 2014;41:960-975. doi:10.1080/02678292.2014.896051.
    • 27. Goodby JW, Saez IM, Cowling SJ, et al. Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem Int Ed. 2008;47:2754-2787. doi:10.1002/anie.200701111.
    • 28. Rupar I, Mulligan KM, Roberts JC, et al. Elucidating the smectic A-promoting effect of halogen end-groups in Calamitic liquid crystals. J Mater Chem C. 2013;1:3729- 3735. doi:10.1039/C3TC30534A.
    • 29. Davis EJ, Mandle RJ, Russell BK, et al. Liquid-crystalline structure-property relationships in halogen terminated derivatives of cyanobiphenyl. Liq Cryst. 2014;41:1635- 1645. doi:10.1080/02678292.2014.940505.
    • 30. Schubert CPJ, Bogner A, Porada JH, et al. Design of liquid crystals with 'de Vries-like' properties: carbosilane-terminated 5-phenylpyrimidine mesogens suitable for chevron-free FLC formulations. J Mater Chem C. 2014;2:4581-4589. doi:10.1039/C4TC00393D.
    • 31. Mulligan KM, Bogner A, Song Q, et al. Design of liquid crystals with 'de Vries-like' properties: the effect of carbosilane nanosegregation in 5-phenyl-1,3,4-thiadiazole mesogens. J Mater Chem C. 2014;2:8270-8276. doi:10.1039/C4TC01364F.
    • 32. Mandle RJ, Davis EJ, Voll CCA, et al. Self-organisation through size-exclusion in soft materials. J Mater Chem C. 2015;3:2380-2388. doi:10.1039/C4TC02991G.
    • 33. Thompson M, Carkner C, Bailer A, et al. Tuning the mesogenic properties of 5-alkoxy-2-(4-alkoxyphenyl) pyrimidine liquid crystals: the effect of a phenoxy endgroup in two sterically equivalent series. Liq Cryst. 2014;41:1246-1260. doi:10.1080/02678292.2014. 913721.
    • 34. Bennani YL, Coner SE, Dinges J, et al. Aminoalkoxybiphenylnitriles as Histamine-3 receptor ligands. Bioorg Med Chem Lett. 2002;12:3077-3079. doi:10.1016/S0960-894X(02)00648-0.
    • 35. Mandle RJ, Davis EJ, Sarju JP, et al. Control of free volume through size exclusion in the formation of smectic C phases for display applications. J Mater Chem C. 2015;3:4333-4344. doi:10.1039/c5tc00552c.
    • 36. Itahara T, Tamura H. Comparison of liquid crystalline properties of symmetric and nonsymmetric liquid crystal trimers. Mol Cryst Liq Cryst. 2007;474:17-27. doi:10.1080/15421400701617749.
    • 37. Mouquino A, Saavedra M, Maiau A, et al. Films based on new methacrylate monomers: synthesis, characterisation and electrooptical properties. Mol Cryst Liq Cryst. 2011;542:557-566. doi:10.1080/15421406.2011.570154.
    • 38. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revision E.01. Wallingford (CT): Gaussian; 2009.
    • 39. Zuev VV. 4-allyloxy-4′-cyanobiphenyl. A photoluminescing nematic liquid crystalline compound. Russian J Gen Chem. 2006;76:498. doi:10.1134/S1070363206030261.
    • 40. Shepperson KJ, Meyer T, Mehl GH. Polyphilic multicomponent dimers with perfluorinated cores. Mol Cryst Liq Cryst. 2004;411:185-191. doi:10.1080/15421 400490435026.
    • 41. Maier W, Meier G. A simple theory of the dielectric characteristics of homogenously orientated liquid-crystalline phases of the nematic type. Z Naturforsch. 1921;16A:262-267.
    • 42. Onsager L. Electric moments of molecules in liquids. JACS. 1932;58:1486-1493. doi:10.1021/ja01299a050.
    • 43. Urban S. Static dielectric properties of nematics. In: Dunmur DA, Fukuda A, Luckhurst GR, editors. Physical properties of liquid crystals: nematics. London: IEEE; 2001. p. 267-276.
    • 44. Ringstrand B, Kaszynski P, Januszko A, et al. Polar derivatives of the [closo-1-CB9H10]− cluster as positive Δε additives to nematic hosts. J Mater Chem. 2009;19:9204-9212. doi:10.1039/b913701g.
    • 45. Ran Z, Jun H, Zeng-Hui P, et al. Calculating the dielectric anisotropy of nematic liquid crystals: a reinvestigation of the Maier-Meier theory. Chin Phys B. 2009;18:2885-2892. doi:10.1088/1674-1056/18/7/044.
    • 46. Kaszynski P, Januszko A, Glab KL. Comparative analysis of fluorine-containing mesogenic derivatives of carborane, bicyclo[2.2.2]octane, cyclohexane and benzene using the Maier-Meier theory. J Phys Chem B. 2014;118:2238-2248. doi:10.1021/jp411343a.
    • 47. Mandle RJ, Cowling SJ, Sage I, et al. Relationship between molecular association and reentrant phenomena in polar calamitic liquid crystals. J Phys Chem B. 2015;119:3273-3280. doi:10.1021/jp512093j.
    • 48. Aliev AE, Arendorf JRT, Pavlakos I, et al. Surfing π- clouds for noncovalent interactions: arenes versus alkenes. Angew Chem Int Ed. 2015;54:551-555. doi:10.1002/anie.201409672.
    • 49. Cladis PE. New liquid crystal phase diagram. Phys Rev Lett. 1975;35:48-51. doi:10.1103/PhysRevLett.35.48.
    • 50. Cladis PE, Mandle RJ, Goodby JW. Reentrant phase transitions in liquid crystals. In: Goodby JW, Collings PJ, Kato T, et al., editors. The handbook of liquid crystals. 2nd ed. Weinheim: Wiley-VCH; 2014.
    • 51. Riblet G, Winzer K. Vanishing of superconductivity below a second transition temperature in (La1-χ Ce χ) Al2 alloys due to the Kondo effect. Solid State Commun. 1971;9:1663-1665. doi:10.1016/0038-1098 (71)90336-X.
    • 52. Tinh NH, Hardouin F, Desterade C. Trois phénomènes rentrants dans un produit pur mésogène. J Physique. 1982;43:1127. doi:10.1051/jphys:0198200430 70112700.
    • 53. Shashidhar R, Ratna BR, Surendranath V, et al. Experimental studies on a triply reentrant mesogen. J Physique Lett. 1985;46:L445-L450. doi:10.1051/jphyslet: 019850046010044500.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article