LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ramchurn, Sarvapali; Fischer, Joel; Ikuno, Yuki; Wu, Feng; Flann, Jack; Waldock, Antony (2015)
Languages: English
Types: Unknown
Subjects:
We consider a setting where a team of humans oversee the coordination of multiple Unmanned Aerial Vehicles (UAVs) to perform a number of search tasks in dynamic environments that may cause the UAVs to drop out. Hence, we develop a set of multi-UAV supervisory control interfaces and a multi-agent coordination algorithm to support human decision making in this setting. To elucidate the resulting interactional issues, we compare manual and mixed-initiative task allocation in both static and dynamic environments in lab studies with 40 participants and observe that our mixed initiative system results in lower workloads and better performance in re-planning tasks than one which only involves manual task allocation. Our analysis points to new insights into the way humans appropriate flexible autonomy.

Share - Bookmark

Cite this article