LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Jing Ping (2006)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: Q, Nonlinear Sciences - Exactly Solvable and Integrable Systems

Classified by OpenAIRE into

arxiv: Nonlinear Sciences::Exactly Solvable and Integrable Systems
Identifiers:doi:10.1063/1.2375032
We develop the symbolic representation method to derive the hierarchies of (2+1)-dimensional integrable equations from the scalar Lax operators and to study their properties globally. The method applies to both commutative and noncommutative cases in the sense that the dependent variable takes its values in C or a noncommutative associative algebra. We prove that these hierarchies are indeed quasi-local in the commutative case as conjectured by Mikhailov and Yamilov [J. Phys. A 31, 6707 (1998)]. We propose a ring extension in the noncommutative case based on the symbolic representation. As examples, we give noncommutative versions of Kadomtsev-Petviashvili (KP), modified Kadomtsev-Petviashvili (mKP), and Boussinesq equations.

Share - Bookmark

Cite this article