LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Shutts, Samuel; Elliott, Stella; Smowton, Peter Michael; Krysa, Andrey B. (2015)
Publisher: Institute of Physics
Languages: English
Types: Article
Subjects: QC

Classified by OpenAIRE into

arxiv: Physics::Optics, Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
We explore the accessible wavelength range offered by InP/AlGaInP quantum dots (QD)s grown by metal–organic vapour phase epitaxy and explain how changes in growth temperature and wafer design can be used to influence the transition energy of the dot states and improve the performance of edge-emitting lasers. The self assembly growth method of these structures creates a multi-modal distribution of inhomogeneously broadened dot sizes, and via the effects of state-filling, allows access to a large range of lasing wavelengths. By characterising the optical properties of these dots, we have designed and demonstrated dual-wavelength lasers which operate at various difference-wavelengths between 8 and 63 nm. We show that the nature of QDs allows the difference-wavelength to be tuned by altering the operating temperature at a rate of up to 0.12 nm K−1 and we investigate the factors affecting intensity stability of the competing modes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Manz Y M, Schmidt O G and Eberl K 2000 Room temperature lasing via ground state of current injected vertically aligned InP/GaInP quantum dots Appl. Phys. Lett. 76 3343-5
    • [2] Walter G, Elkow J, Holonyak N, Heller R D, Zhang X B and Dupuis R D 2004 Visible spectrum (645 nm) transverse electric field laser operation of InP quantum dots coupled to tensile strained In0.46Ga0.54P quantum wells Appl. Phys. Lett. 84 666-8
    • [3] Liu G T, Stintz A, Li H, Malloy K J and Lester L F 1999 Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well Electron. Lett. 35 1163-5
    • [4] Krysa A B, Liew S L, Lin J C, Roberts J S, Lutti J, Lewis G M and Smowton P M 2007 Low threshold InP/ AlGaInP on GaAs QD laser emitting at ≈ 740 nm J. Cryst. Growth 298 663-6
    • [5] Lutti J, Smowton P M, Lewis G M, Krysa A B, Roberts J S, Houston P A, Xin Y C, Li Y and Lester L F 2005 740 nm InP-GaInP quantum-dot laser with 190 A cm−2 room temperature threshold current density Electron. Lett. 41 247-8
    • [6] Smowton P M, Lutti J, Lewis G M, Krysa A B, Roberts J S and Houston P A 2005 InP-GaInP quantum-dot lasers emitting between 690 and 750 nm IEEE J. Sel. Top. Quantum Electron. 11 1035-40
    • [7] Smowton P M, Al-Ghamdi M S, Shutts S, Edwards G, Hutchings M and Krysa A B 2010 Effect of growth temperature on InP QD lasers IEEE Photonics Technol. Lett. 22 88-90
    • [8] Elliott S N, Smowton P M, Krysa A B and Beanland R 2012 The effect of strained confinement layers in InP selfassembled quantum dot material Semicond. Sci. Technol. 27 094008
    • [9] Kuntz M, Fiol G, Laemmlin M, Meuer C and Bimberg D 2007 High-speed mode-locked quantum-dot lasers and optical amplifiers Proc. IEEE 95 1767-78
    • [10] Langbein W, Cesari V, Masia F, Krysa A B, Borri P and Smowton P M 2010 Ultrafast gain dynamics in InP quantum-dot optical amplifiers Appl. Phys. Lett. 97 211103
    • [11] Naderi N A, Grillot F, Yang K, Wright J B, Gin A and Lester L F 2010 Two color multi-section quantum dot distributed feedback laser Opt. Express 18 27028-35
    • [12] Daghestani N S, Cataluna M A, Ross G and Rose M J 2011 Compact dual-wavelength InAs/GaAs quantum dot externalcavity laser stabilized by a single volume Bragg grating IEEE Photonics Technol. Lett. 23 176-8
    • [13] Qin J, Reif R, Zhi Z, Dziennis S and Wang R 2012 Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system Biomed. Opt. Express 3 455-66
    • [14] Gomyo A, Suzuki T, Kobayashi K, Kawata S, Hino I and Yuasa T 1987 Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapour phase epitaxy and its relation to band-gap energy Appl. Phys. Lett. 50 673-5
    • [15] Bellon P, Chevalier J P, Augarde E, Andre J P and Martin G P 1989 Substrate-driven ordering microstructure in GaxIn1−xP alloys J. Appl. Phys. 66 2388-94
    • [16] Kondow M, Kakibayashi H, Minagawa S, Inoue Y, Nishino T and Hamakawa Y 1988 Crystalline and electronic energy structure of OMVPE-grown AlGaInP/GaAs J. Cryst. Growth 93 412-7
    • [17] Löffler A, Reithmaier J-P, Forchel A, Sauerwald A, Peskes D, Kümmell T and Bacher G 2006 Influence of the strain on the formation of GaInAs/GaAs quantum structures J. Cryst. Growth 286 6-10
    • [18] Lewis G M, Lutti J, Smowton P M, Blood P, Krysa A B and Liew S L 2004 Optical properties of InP/GaInP quantum-dot laser structures Appl. Phys. Lett. 85 1904-6
    • [19] Schulz W-M, Roßbach R, Reischle M, Beirne G J, Bommer M, Jetter M and Michler P 2009 Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P Phys. Rev. B 79 035329
    • [20] Porsche J, Ruf A, Geiger M and Scholz F 1998 Size control of self-assembled InP/GaInP quantum islands J. Cryst. Growth 195 591-5
    • [21] Shchukin V A, Ledentsov N N, Soshnikov I P, Kryzhanovskaya N V, Maximov M V, Zakharov N D, Werner P and Bimberg D 2006 Nanofaceting and alloy decomposition: from basic studies to advanced photonic devices Microelectron. J. 37 1451-60
    • [22] Lutti J, Smowton P M, Lewis G M, Blood P, Krysa A B, Lin J C, Houston P A, Ramsay A J and Mowbray D J 2005 Gain saturation in InP/GaInP quantum-dot lasers Appl. Phys. Lett. 86 011111
    • [23] Blood P, Lewis G M, Smowton P M, Summers H D, Thomson J D and Lutti J 2003 Characterisation of semiconductor laser gain media by the segmented contact method IEEE J. Sel. Top. Quantum Electron. 9 1275-82
    • [24] Al-Ghamdi M S, Smowton P M and Blood P 2011 Dot density effect by quantity of deposited material in InP/AlGaInP structures IEEE Photonics Technol. Lett. 23 1169-71
    • [25] Blood P, Fletcher E D, Hulyer P J and Smowton P M 1986 Emission wavelength of AlGaAs-GaAs multiple quantum well lasers Appl. Phys. Lett. 48 1111
    • [26] Li W, Zhang X and Yao J 2013 Experimental demonstration of a multiwavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology Opt. Express 21 19966-71
    • [27] Shutts S, Smowton P M and Krysa A B 2013 InP quantum dot lasers with temperature insensitive operating wavelength Appl. Phys. Lett. 103 061106
    • [28] Pozzi F, De La Rue R M and Sorel M 2006 Dual wavelength InAlGaAs-InP laterally coupled distributed feedback laser IEEE Photonics Technol. Lett. 18 2563-5
    • [29] Price R K, Verma V B, Tobin K E, Elarde V C and Coleman J J 2007 Y-branch surface etched distributed Bragg reflector lasers at 850 nm for optical heterodyning IEEE Photonics Technol. Lett. 19 1610-2
    • [30] Kaspi R, Onstad A P, Dente G C, Tilton M L and Tauke-Pedretti A 2008 Optically pumped mid-infrared laser with simultaneous dual wavelength emission IEEE Photonics Technol. Lett. 20 1467-9
    • [31] Ito S, Suehiro M, Hirata T and Hidaki T 1995 Two longitudinal-mode laser diodes IEEE Photonics Technol. Lett. 7 959-61
    • [32] Sugawara M, Mukai K, Nakata Y, Otsubo K and Ishikawa H 2000 Performance and physics of quantum dot lasers with self assembled columnar shaped and 1.3 μm emitting InGaAs quantum dots IEEE J. Sel. Top. Quantum Electron. 6 462-74
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article