Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ratcliffe, Naomi
Languages: English
Types: Doctoral thesis
Subjects: QC

Classified by OpenAIRE into

arxiv: Physics::Medical Physics, Nuclear Experiment
This thesis explores the potential of a compact low energy (<10MeV) proton accelerator for medical applications such as the production of neutrons for cancer neutron therapy and the production of SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) radioisotopes. \ud During the course of this study the simulation code GEANT4 was used to study yields of these neutrons and isotopes from the typically low threshold high cross-­‐section (p,n) reactions. Due to the limits of the \ud current models within GEANT4 some development of a new data-­‐driven model for low energy proton interactions was undertaken and has been tested here. This model was found to be suitably reliable for continued study into the low energy production of positron emitting, PET, isotopes of copper and gallium as replacements for the main SPECT isotope technetium-­‐99m. While 99mTc is currently the most popular radioisotope being used in over 90% of the worlds nuclear medicine diagnostic procedures supply is under threat by the impending shut down of the current reactor based sources.\ud Simulations of both thin and thick targets were carried out to study the potential of low energy production of these isotopes. The final activity of the radioisotopes after irradiation of these targets produced by the simulations has been shown here to be sufficient for multiple doses. The useable activity is dependent on the efficiency of the extraction process and the time between irradiation and administration.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article