Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sorokina, Mariia
Languages: English
Types: Doctoral thesis

Classified by OpenAIRE into

arxiv: Computer Science::Information Theory, Quantitative Biology::Cell Behavior, Mathematics::Probability
mesheuropmc: fungi
The exponentially increasing demand on operational data rate has been met with technological advances in telecommunication systems such as advanced multilevel and multidimensional modulation formats, fast signal processing, and research into new different media for signal transmission. Since the current communication channels are essentially nonlinear, estimation of the Shannon capacity for modern nonlinear communication channels is required. This PhD research project has targeted the study of the capacity limits of different nonlinear communication channels with a view to enable a significant enhancement in the data rate of the currently deployed fiber networks. In the current study, a theoretical framework for calculating the Shannon capacity of nonlinear regenerative channels has been developed and illustrated on the example of the proposed here regenerative Fourier transform (RFT). Moreover, the maximum gain in Shannon capacity due to regeneration (that is, the Shannon capacity of a system with ideal regenerators – the upper bound on capacity for all regenerative schemes) is calculated analytically. Thus, we derived a regenerative limit to which the capacity of any regenerative system can be compared, as analogue of the seminal linear Shannon limit. A general optimization scheme (regenerative mapping) has been introduced and demonstrated on systems with different regenerative elements: phase sensitive amplifiers and the proposed here multilevel regenerative schemes: the regenerative Fourier transform and the coupled nonlinear loop mirror.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 130 133 2.1 Basic components of a communication system . . . . . . . . . . . . . 18 2.2 Basic components of a communication system (expanded version) . . 19 2.3 Basic modulation formats . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 The entropy of the binary case . . . . . . . . . . . . . . . . . . . . . 23 2.5 Cutoff rate (for equiprobable q-ASK) and capacity . . . . . . . . . . 30 3.1 Dependence of the Shannon capacity of the linear AWGN channel on channel bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
    • 1. M. A. Sorokina and S. K. Turitsyn, "Regeneration limit of classical Shannon capacity," Nat. Comm. 5 (2014). (ch. 5).
    • 2. M. A. Sorokina, "Design of multilevel amplitude regenerative system," Opt. Letters 39, 2499-2502 (2014) (ch. 6).
    • 3. M. Sorokina, S. Sygletos, A. D. Ellis, and S. Turitsyn, "Optimal packing for cascaded regenerative transmission based on phase sensitive amplifiers," Opt. Express 21, 31201-31211 (2013) (ch. 6).
    • 4. M. A. Sorokina, S. Sygletos, and S. K. Turitsyn, "Optimization of cascaded regenerative links based on phase sensitive amplifiers", Opt. Letters 38, 4378- 4381 (2013) (ch. 6).
    • 5. A.D. Ellis, M. Sorokina, S. Sygletos, S.K. Turitsyn, "Capacity in nonlinear fiber transmission systems", ACP2013 (invited) (ch. 5).
    • 6. M. Sorokina, and S. Turitsyn, "Design of nonlinear regenerative systems with high capacity", ICTON2013 (invited) (ch. 5).
    • 7. M. A. Sorokina and S. K. Turitsyn, "Nonlinear signal transformations: Path to capacity above linear channels," 2014 IEEE Summer Topical Meeting on Nonlinear-Optical Signal Processing (invited) (ch. 5).
    • 8. M. A. Sorokina and S. K. Turitsyn, "Efficiency of different regenerative channels," ICTON 2014 (invited) (ch. 6).
    • 9. M. Sorokina, S. Sygletos, and S. Turitsyn, "Optimization method for PSA-based multi-level regenerators", ECOC 2013 (P.4.7) (ch. 6).
    • 10. M. Sorokina, S. Sygletos, and S. Turitsyn, "Efficient packing for phase regenerative channels", IPC2013 (ch. 6).
    • 11. M. A. Sorokina, "Multilevel amplitude regeneration of 256-symbol constellation" CLEO 2014 (ch. 6).
    • 12. S. Sygletos, M. E. McCarthy, S. J. Fabbri, M. Sorokina, M. F. C. Stephens, I. D. Phillips, E. Giacoumidis, N. Mac Suibhne, P. Harper, N. J. Doran, S. K. Turitsyn, A. D. Ellis, "Multichannel regeneration of dual quadrature signals," ECOC 2014 (accepted) (ch 6).
    • [1] C. E. Shannon, "Mathematical theory of communication," Bell Syst. Tech. J. 27, 379 (1948); 27, 623 (1948).
    • [11] A. Splett, C. Kurzke, and K. Petermann, In Proc. of the European Conf. on Opt. Com., ECOC93, 2, 41 (1993).
    • [12] P. P. Mitra and J. B. Stark, "Nonlinear limits to the information capacity of optical fibre communications," Nature 411, 1027-1030 (2001).
    • [13] J. B. Stark, P. Mitra, A. Sengupta, "Information capacity of nonlinear wavelength division multiplexing fiber optic transmission line," Optical Fiber Technology 7, 275-288 (2001).
    • [14] X. Chen and W. Shieh, "Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems," Opt. Express 18, 19039-19054 (2010)
    • [15] R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J.Winzer, "Capacity limits of optical fiber networks," Phys. Rev. Lett., 101, 163901 (2008).
    • [16] R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Lightwave Technol. 28(4), 662-701 (2010).
    • [17] K.S. Turitsyn, S.A. Derevyanko, I.V. Yurkevich, and S. K. Turitsyn, "Information capacity of optical fiber channels with zero average dispersion," Physical Review Letters 91, 203901 (2003).
    • [18] A.D. Ellis, J. Zhao, and D. Cotter, "Approaching the non-linear Shannon limit," J. Lightwave Technol. 28, 423-433(2010).
    • [23] R. J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, "Capacity Limits of Optical Fiber Networks," J. Lightwave Technol. 28, 662-701 (2010).
    • [24] Z. H. Peric, I. B. Djordjevic, S. M. Bogosavljevic, and M. C. Stefanovic, "Design of signal constellations for Gaussian channel by iterative polar quantization," in Proc. 9th Mediterranean Electrotech. Conf., May 1998, vol. 2, 866-869.
    • [25] H.G. Batshon, I.B. Djordjevic, L. Xu, and T. Wang, "Iterative polar quantizationbased modulation to achieve channel capacity in ultrahigh-speed optical communication systems", IEEE Photonics Journal, 2(4), 593 - 599 2010.
    • [26] I.B. Djordjevic, "Spatial-domain-based hybrid multidimensional codedmodulation schemes enabling multi-Tb/s optical transport", Journal of Lightw. Technol., 30(14), 2315 - 2328 (2012).
    • [27] T.H. Lotz, X. Liu, S. Chandrasekhar, P.J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, D.W. Peckham, "Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach", Journal of Lightwave Technology, 31(4), 538 - 545 (2013).
    • [28] M. Karlsson and E. Agrell, "Power-efficient modulation schemes" in Impact of Nonlinearities on Fiber Optic Communications, Optical and Fiber Communications Reports, 7, 219-252 (2011).
    • [29] K. C. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies", Proc. IEEE 113, 1151-1158 (1966).
    • [30] D. J. Richardson, "Filling the pipe", Science 330, 327 (2010).
    • [31] D.J. Malyon, T. Widdowson, E.G. Bryant, S.F. Carter, J.V. Wright, W.A. Stallard, Electron. Lett. 27(2), 120-121 (1991)
    • [32] H.J. Thiele, R.I. Killey, and P. Bayvel, "Influence of fibre dispersion and bit rate on cross-phase-modulation-induced distortion in amplified optical fibre links," Electron. Lett. 34(21), 2050-2051 (1998).
    • [33] A.D. Ellis and W.A. Stallard, "Four wave mixing in ultra long transmission systems incorporating linear amplifiers", IEE Colloquium, 159 (1990), http://ieeexplore.ieee.org/xpl/freeabs all.jsp? arnumber=190875
    • [34] R.-J. Essiambre, B. Mikkelsen, G. Raybon, "Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems," Electron. Lett. 35(18), 1576-1578 (1999).
    • [35] A.D. Ellis, J.D. Cox, D. Bird, J. Regnault, J.V. Wright, W.A. Stallard, "5 Gbit/s soliton propagation over 350 km with large periodic dispersion coefficient perturbations using erbium doped fibre amplifier repeaters," Electron. Lett. 27(10), 878 (1991).
    • [36] I. Morita, K. Tanaka, N. Edagawa, M. Suzuki, "Impact of the dispersion map on long-haul 40 Gbith single-channel soliton transmission with periodic dispersion compensation", in Proceedings of OFC99, San Diego, Paper FD1, 1999
    • [37] P.V. Mamyshev and L.F. Mollenauer, "Pseudo-phase-matched four-wave mixing in soliton wavelength-division multiplexing transmission," Opt. Lett 21(6), 396- 398 (1996).
    • [38] N.J. Smith and N.J. Doran, "Modulational instabilities in fibers with periodic dispersion management," Opt. Lett. 21(8), 570-572 (1996).
    • [39] E Pincemin, A. Tan, A. Bezard, A. Tonello, S.Wabnitz, J-D Ania-Castanon, S. Turitsyn, "Robustness of 40 Gb/s ASK modulation formats in the practical system infrastructure," Opt. Express 14(25), 12049-12062 (2006).
    • [40] S. Watanabe, S. Kaneko, T. Chikama, "Long-haul fibertransmission using optical phase conjugation", Optical Fiber Technology, 2(2), 169-178 (1996).
    • [41] M. Nakazawa,E. Yamada, H. Kubota, K. Suzuki , "10 Gbit/s soliton data transmission over one million kilometres," Electronics Letters, 27(14), 1270-1272 (1991).
    • [42] F. Seguineau, B. Lavigne, D. Rouvillain, P. Brindel, L. Pierre, and O. Leclerc, "Experimental demonstration of simple NOLM-based 2R regenerator for 42.66 Gbit/sWDMlong-haul transmissions," Proc. Opt. Fiber Commun. Conf. WN4 (2004).
    • [43] A. Gray, Z.Huang, I. Khrushchev, and I. Bennion, "Autosoliton propagation at 80 Gbit/s using concatenated nonlinear loop switches in standard fibre," Electron. Lett., 40(8), 498-500 (2004).
    • [44] G. Goldfarb, M.G. Taylor, G. Li; , "Experimental demonstration of fiber impairment compensation using the split-step infinite impulse response method", Digest of the IEEE/LEOS Summer Topical Meetings 2008, 145-146, (2008).
    • [45] D. Rafique, J. Zhao, and A. D. Ellis, "Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission," Opt. Express 19, 5219- 5224 (2011).
    • [46] E. Agrell, "The channel capacity increases with power", arXiv:1108.0391.
    • [47] P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, "Analytical modeling of non-linear propagation in uncompensated optical transmission links," IEEE Photon. Technol. Lett. 23, 742-744 (2011).
    • [48] J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, "Space division multiplexed transmission of 109- Tb/s data signals using homogeneous seven-core fiber," J. Lightwave Technol. 30, 658-665 (2012).
    • [49] R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, "Mode-division multiplexing over 96 km of fewmode fiber using coherent 6 × 6 MIMO processing," J. Lightwave Technol. 30, 521-531 (2012).
    • [50] A, Mecozzi, C, Antonelli, and M, Shtaif, "Nonlinear propagation in multi-mode fibers in the strong coupling regime," Opt. Express 20, 11673-11678 (2012)
    • [51] R. A. Fisher, B. R. Suydam, and D. Yevick, "Optical phase conjugation for timedomain undoing of dispersive self-phase-modulation effects," Opt. Lett. 8, 611- 613 (1983).
    • [52] A. H. Gnauck, R. M. Jopson, and R. M. Derosier, "10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion," IEEE Photon. Technol. Lett. 5, 663-666 (1993).
    • [53] S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, and H. Kuwahara, "Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation," IEEE Photon. Technol. Lett. 5, 1241-1243 (1993).
    • [54] X. Chen, X. Liu, S. Chandrasekhar, B. Zhu, and R. W. Tkach, "Experimental demonstration of fiber nonlinearity mitigation using digital phase conjugation," Optical Fiber Communication Conference (OFC), paper OTh3C.1 (2012).
    • [55] M. D. Pelusi and B. J. Eggleton, "Optically tunable compensation of nonlinear signal distortion in optical fiber by end-span optical phase conjugation," Opt. Express 20, 8015-8023 (2012).
    • [56] D. Rafique and A. D. Ellis, "Nonlinearity compensation in multi-rate 28 Gbaud WDM systems employing optical and digital techniques under diverse link configurations," Opt. Express 19, 16919-16926 (2011).
    • [57] X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, "Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit," Nature Photonics 7, 560-568 (2013).
    • [58] E. Ip and J. M. Kahn, "Fiber communications: time-reversed twin," Nature Photonics 7, 507-508 (2013).
    • [59] X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, "Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing," Opt. Express 16(2), 880-888 (2008).
    • [60] E. G. Turitsyna and S. K. Turitsyn, "Digital signal processing based on inverse scattering transform," Opt. Lett. 38, 4186-4188 (2013).
    • [61] M. Matsumoto, "Fiber-based all-optical signal regeneration," IEEE J. Sel. Top. Quantum Electron., 18(2), 738-752 (2012).
    • [62] S. Sygletos, P. Frascella, S.K. Ibrahim, L. Gruner-Nielsen, R. Phelan, J. O"Gorman, A.D. Ellis "A practical phase sensitive amplification scheme for two channel phase regeneration", Optics Express 19(26), B938-B945 (2011).
    • [63] R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. Richardson, "All-optical phase and amplitude regenerator for next generation telecommunications systems," Nat. Photonics 4(10), 690-695 (2010).
    • [64] R. P. Webb, J. M. Dailey, R. J. Manning, and A. D. Ellis, "Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA," Optics Express 19, 20015-20022 (2011).
    • [65] S. Sygletos, M. E. McCarthy, S. J. Fabbri, M. Sorokina, M. F. C. Stephens, I. D. Phillips, E. Giacoumidis, N. Mac Suibhne, P. Harper, N. J. Doran, S. K. Turitsyn, A. D. Ellis, "Multichannel regeneration of dual quadrature signals," in Optical Communication (ECOC 2014), 39th European Conference and Exhibition on Optical Communications, P.3.13.
    • [66] J. Kakande, R. Slavik, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, "Multilevel quantization of optical phase in a novel coherent parametric mixer architecture," Nat. Photonics 4(12), 748-752 (2011).
    • [67] G. Hesketh and P. Horak, "Reducing bit-error rate with optical phase regeneration in multilevel modulation formats," Opt. Lett. 38, 5357-5360 (2013).
    • [68] A. Bogris and D. Syvridis, "All-optical signal processing for 16-QAM using fourlevel optical phase quantizers based on phase sensitive amplifiers," in Proceedings of European Conference in Optical Communications (ECOC 2013), London, paper We.3A.6, (2013).
    • [69] F. Seguineau, B. Lavigne, D. Rouvillain, P. Brindel, L. Pierre, and O. Leclerc, "Experimental demonstration of simple NOLM-based 2R regenerator for 42.66 Gbit/sWDMlong-haul transmissions," Proc. Opt. Fiber Commun. Conf. WN4 (2004).
    • [70] A. Gray, Z.Huang, I. Khrushchev, and I. Bennion, "Autosoliton propagation at 80 Gbit/s using concatenated nonlinear loop switches in standard fibre," Electron. Lett., 40(8), 498-500 (2004).
    • [71] T. Umeki, M. Asobe, H. Takara, Y. Miyamoto, and H. Takenouchi, "Multispan transmission using phase and amplitude regeneration in PPLN-based PSA," 21(15), 18170-18177 (2013).
    • [72] K. S. Turitsyn, K.S and S.K. Turitsyn, "Nonlinear communication channels with capacity above the linear Shannon limit," Opt. Lett. 37, 3600-3602 (2012).
    • [73] J. Gleck, The Information: A History, a Theory, a Flood (Fourth Estate, 2011).
    • [74] J. G. Proakis, Digital Communications (McGraw-Hill, New York, 2001).
    • [75] H. Nyquist, "Certain factors affecting telegraph speed," Bell Syst. Tech. J., 3, 324-352 (1924).
    • [76] H. Nyquist, "Certain topics in telegraph transmission theory," AIEE Trans., 47, 617-644 (1928).
    • [84] S. Verdu, "Fifty years of Shannon theory," IEEE Trans. Information Theory, Special Commemorative Issue, 44 6, 2057-2078 (1998).
    • [85] C. E. Shannon, "Communication theory of secrecy systems," Bell Syst. Tech. J., 28, 656-715 (1949).
    • [86] D. Gabor, "Theory of communication," J. Inst. Elec. Eng., 93, 429-457 (1946).
    • [88] J. von Neumann. Mathematical foundations of quantum mechanics. Princeton University Press, Princeton, NJ, 1932, 1949, 1955.
    • [89] N. Wiener, Cybernetics, (New York: Wiley, 1948).
    • [92] T. M. Cover and J.A. Thomas, Elements of Information Theory, (Wiley, 1991)
    • [93] D. J. MacKay, Information theory, interference, and learning algorithms, (Cambridge university press, 2009).
    • [94] C. E. Shannon, "Coding theorems for a discrete source with a fidelity criterion," in IRE Nat. Conv. Rec., 142-163, (1959).
    • [95] W. Karush, Minima of Functions of Several Variables with Inequalities as Side Constraints. M.Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago,Chicago, Illinois (1939).
    • [96] H. W. Kuhn and A. W. Tucker, "Nonlinear programming". Proceedings of 2nd Berkeley Symposium. Berkeley: University of California Press. 481-492 (1951).
    • [97] M. Frank and P. Wolfe, "An algorithm for quadratic programming", Naval Research Logistics Quarterly 3: 95. doi:10.1002/nav.3800030109 (1956).
    • [98] S. Arimoto, "An algorithm for computing the capacity of arbitrary discrete memoryless channels," IEEE T. Inform Theory, 18, 14-20 (1972).
    • [99] R. Blahut, "Computation of channel capacity and rate-distortion functions," IEEE T. Inform Theory, 18, 460-473 (1972).
    • [100] G. Matz and P. Duhamel, "Information geometric formulation and interpretation of accelerated Blahut-Arimoto-type algorithms," Proc. 2004 IEEE Information Theory Workshop, San Antonio, TX, USA, Oct. 24-29, 2004.
    • [101] N. Varnica, X. Ma, and A. Kavcic , "Capacity of power constrained memoryless AWGN channels with fixed input constellations," in Proc. IEEE Global Telecommunications Conf. (GLOBECOM), Taipei, Taiwan, China, Nov. 2002, pp. 1339-1343.
    • [102] C.-I. Chang and L. D. Davisson, "On calculating the capacity of an infinite-input finite (infinite) -output channel," IEEE Trans. Inf. Theory, 34, 1004-1010 (1988).
    • [104] D. Arnold and H.-A. Loeliger, "On the information rate of binary-input channels with memory," Proc. 2001 IEEE Int. Conf. on Communications, Helsinki, Finland, June 11âA˘ S¸14, 2001, pp. 2692-2695.
    • [105] V. Sharma and S. K. Singh, "Entropy and channel capacity in the regenerative setup with applications to Markov channels," Proc. 2001 IEEE Int. Symp. Information Theory, Washington, DC, USA, June 24-29, 2001, p. 283.
    • [106] H. D. Pfister, J. B. Soriaga, and P. H. Siegel, "On the achievable information rates of finite-state ISI channels," Proc. 2001 IEEE Globecom, San Antonio, TX, pp. 2992-2996, Nov. 25-29, 2001.
    • [107] J. Dauwels and H.-A. Loeliger, "Computation of information rates by particle methods," IEEE Trans. Inf. Theory, 54, 406-409, (2008).
    • [108] G.P. Agrawal, Fiber-Optic Communication Systems, 3rd ed (Wiley, New York, 2002).
    • [109] J. Rice, Mathematical Statistics and Data Analysis (Second ed.), (Duxbury Press, ISBN 0-534-20934-3, 1995).
    • [110] C. E. Shannon, "The zero error capacity of a noisy channel," IRE Trans. Inform. Theory, vol. IT-2, 112-124 (1956).
    • [111] J. Kerr, "A new relation between electricity and light: Dielectrified media birefringent," Phil. Mag., 5019, 3337 (1875).
    • [113] E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (Wiley, 1998).
    • [114] S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, "Polarization multiplexing with solitons," J. Lightw. Technol., 10(1), 28-35 (1992).
    • [115] A. Einstein, "On the quantum theory of radiation," Phys. Zeits., 18 121 (1917).
    • [116] C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods With Applications to Quantum Optics, 3rd ed. New York: Springer-Verlag, 2004.
    • [117] J. P. Gordon, W. H. Louisell, and L. R. Walker, "Quantum fluctuations and noise in parametric processes II," Phys. Rev., 129, 481-485 (1963).
    • [118] J. P. Gordon, L. R.Walker, and W. H. Louisell, "Quantum statistics of masers and attenuators," Phys. Rev., 130, 806-812 (1963).
    • [119] S. V. Manakov, "On the theory of two-dimensional stationary self-focusing of electromagnetic waves," Sov. Phys. JETP, 38, 248-253 (1974).
    • [120] D. Marcuse, C. R. Menyuk, and P. K. A. Wai, "Application of the ManakovPMD equation to studies of signal propagation in optical fibers with randomly varying birefringence," J. Lightwave Technol. 15, 1735-1746 (1997).
    • [121] C. Menyuk, "Application of multiple-length-scale methods to the study of optical fiber transmission", Journal of Engineering Mathematics, 36, 113-136 (1999).
    • [122] J. P. Gordon and L. F. Mollenauer, "Phase noise in photonic communications systems using linear amplifiers," Opt. Lett. 15 1351-1353 (1990).
    • [123] S.K. Turitsyn, T. Schafer, K.H. Spatschek, V.K. Mezentsev, "Path-averaged chirped optical soliton in dispersion-managed fiber communication lines," Optics Communications 163, 122-158 (1999).
    • [124] J.D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, S. K. Turitsyn, "Ultralong Raman fibre lasers as virtually lossless optical media," Phys. Rev. Lett. 96, 023902 (2006); S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. Kablukov, A. El-Taher, E. Podivilov, and V. K. Mezentsev, "270-km ultralong Raman fiber laser" Phys. Rev. Lett. 103, 133901 (2009).
    • [135] K. Ho, Phase-modulated optical communication systems. Springer, 2005.
    • [136] A. P. T. Lau and J. M. Kahn, "Signal design and detection in presence of nonlinear phase noise," J. Lightw. Technol. 25, 3008-3016 (2007).
    • [137] C. Hager, A. Graell i Amat, A. Alvarado, and E. Agrell, "Design of APSK constellations for coherent optical channels with nonlinear phase noise," IEEE Trans. Commun. 61, 3362-3373 (2013).
    • [138] A.Mecozzi, "A unified theory of intrachannel nonlinearity in pseudolinear phase-modulated transmission," IEEE Photonics Journal 2, 728 (2010).
    • [139] J. B. Stark, P. Mitra, and A. Sengupta, "Information capacity of nonlinear wavelength division multiplexing fiber optic transmission line", Optical Fiber Technology 7, 275-288 (2001).
    • [140] X. Liu, X. Wei, R.E. Slusher, and C.J. McKinstrie, "Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation," Opt. Lett. 27, 1616-1618 (2002).
    • [155] D. Angeli, J.F. Ferrell, and E.D. Sontag, "Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems", Proc. Nat. Acad. Sci. USA 101, 1822-1827 (2004).
    • [156] J. R. Crutchfield, M. Nauenberg, and J. Rudnick, "Scaling for external noise at the onset of chaos," Phys. Rev. Lett. 46, 933-935 (1981).
    • [163] H. J. Thiele, A. D. Ellis, and I. D. Phillips, "Recirculating loop demonstration of 40 Gbit/s all-optical 3R data regeneration using a semiconductor nonlinear interferometer," Elect. Lett. 35(3), 230-231 (1990).
    • [180] Z. H. Peric, I. B. Djordjevic, S. M. Bogosavljevic, and M. C. Stefanovic, "Design of signal constellations for Gaussian channel by iterative polar quantization," in Proc. 9th Mediterranean Electrotech. Conf. 2, 866-869 (1998).
    • [181] R. Dischler, "Experimental Study of 16-, 32- and 64-QAM Constellation Sets in the 200-Gb/s Regime on a Data Rate Flexible System," in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh3B.2.
    • [182] M. Sorokina, S. Sygletos, A. D. Ellis, and S. Turitsyn, "Optimal packing for cascaded regenerative transmission based on phase sensitive amplifiers," Opt. Express 21, 31201-31211 (2013).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article