LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chen, Z.; Walker, R.P.; Acheson, R.M.; Leegood, R.C. (2002)
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: inorganic chemicals
The effect of Mn2+/Mg2+ concentration on the activity of intact, homogeneous phosphoenolpyruvate carboxykinase (PEPCK) from leaves of the C4 grass, Guinea grass (Panicum maximum), have been investigated. Assay conditions were optimized so that PEPCK activity could be measured at concentrations of Mn2+/Mg2+ similar to those found in the cytosol (low micromolar Mn2+ and millimolar Mg2+). PEPCK activity was totally dependent on Mn2+ and was activated at low micromolar concentrations of Mn2+ by millimolar concentrations of Mg2+. Therefore, at physiological concentrations of Mn2+, PEPCK has a requirement for Mg2+. Assay at physiological concentrations of Mn2+/Mg2+ led to a marked decrease in its affinity for ATP and a 13-fold increase in its affinity for CO2. The Km (CO2) was further decreased by assay at physiological ATP to ADP ratios, reaching values as low as 20 μM CO2, comparable with the Km (CO2) of ribulose 1,5-bisphosphate carboxylase-oxygenase. This means that PEPCK will catalyze a reversible reaction and that it could operate as a carboxylase in vivo, a feature that could be particularly important in algal CO2-concentrating systems.\ud

Share - Bookmark

Cite this article