LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Madzvamuse, A; Barreira, R
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: QA, Q, QA297, QA299
The aim of this manuscript is to present for the first time the application of the finite element method for solving reaction-diffusion systems with cross-diffusion on continuously evolving domains and surfaces. Furthermore we present pattern formation generated by the reaction-diffusion systemwith cross-diffusion on evolving domains and surfaces. A two-component reaction-diffusion system with linear cross-diffusion in both u and v is presented. The finite element method is based on the approximation of the domain or surface by a triangulated domain or surface consisting of a union of triangles. For surfaces, the vertices of the triangulation lie on the continuous surface. A finite element space of functions is then defined by taking the continuous functions which are linear affine on each simplex of the triangulated domain or surface. To demonstrate the role of cross-diffusion to the theory of pattern formation, we compute patterns with model kinetic parameter values that belong only to the cross-diffusion parameter space; these do not belong to the standard parameter space for classical reaction-diffusion systems. Numerical results exhibited show the robustness, flexibility, versatility, and generality of our methodology; the methodology can deal with complicated evolution laws of the domain and surface, and these include uniform isotropic and anisotropic growth profiles as well as those profiles driven by chemical concentrations residing in the domain or on the surface.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] E. J. Crampin, W. W. Hackborn, and P. K. Maini, Bull. Math. Biol. 64, 747 (2002).
    • [2] G. Hetzer, A. Madzvamuse, and W. Shen, Disc. Con. Dyn. Sys. 32, 3975 (2012).
    • [3] A. Madzvamuse, R. K. Thomas, P. K. Maini, and A. J. Wathen, Bull. Math. Biol. 64, 501 (2002).
    • [4] A. Madzvamuse, P. K. Maini, and A. J. Wathen, J. Comput. Phys. 190, 478 (2003).
    • [5] A. Madzvamuse, E. A. Gaffney, and P. K. Maini, J. Math. Biol. 61, 133 (2010).
    • [6] A. Turing, Phil. Trans. Royal Soc. B. 237, 37 (1952).
    • [7] J. D. Murray, Mathematical Biology. II, 3rd ed., Interdisciplinary Applied Mathematics Vol. 18 (Springer-Verlag, New York, 2003).
    • [8] J. Bard and I. Lauder, J. Theor. Bio. 45, 501 (1974).
    • [9] A. Gierer and H. Meinhardt, Kybernetik 12, 30 (1972).
    • [10] V. K. Vanag and I. R. Epstein, Phys. Chem. Chem. Phys. 11, 897 (2009).
    • [11] M. S. McAfree and O. Annunziata, Fluid Phase Equilibr. 356, 46 (2013).
    • [12] A. Vergara, F. Capuano, L. Paduano, and R. Sartorio, Macromolecules 39, 4500 (2006).
    • [13] V. Capasso and D. Liddo, J. Math. Biol. 32, 453 (1994).
    • [14] V. Capasso and D. Liddo, J. Math. Anal. Appl. 177, 510 (1993).
    • [15] G. Gambino, M. C. Lombardo, and M. Sammartino, Maths. Comp. Sim. 82, 1112 (2012).
    • [16] G. Gambino, M. C. Lombardo, and M. Sammartino, Nonlinear Anal. Real World Appl. 14, 1755 (2013).
    • [17] M. Iida and M. Mimura, J. Math. Biol. 53, 617 (2006).
    • [18] S. Kova´cs, Nonlin. Anal. 59, 567 (2004).
    • [19] F. Rossi, V. K. Vanag, E. Tiezzi, and I. R. Epstein, J. Phys. Chem. B 114, 8140 (2010).
    • [20] R. Ruiz-Baier and C. Tian, Nonlin. Anal. Real World Appl. 14, 601 (2013).
    • [21] C. Tian, Z. Lin, and M. Pedersen, Nonlin. Anal. Real World Appl. 11, 1036 (2010).
    • [22] Z. Xie, J. Math. Anal. Appl. 388, 539 (2012).
    • [23] J.-F. Zhang, W.-T. Li, and Y.-X. Wang, Nonlin. Anal. 74, 847 (2011).
    • [24] E. P. Zemskov, V. K. Vanag, and I. R. Epstein, Phys. Rev. E 84, 036216 (2011).
    • [25] A. Madzvamuse, H. S. Ndakwo, and R. Barreira, J. Math. Biol., doi:10.1007/s00285-014-0779-6.
    • [26] O. Lakkis, A. Madzvamuse, and C. Venkataraman, SIAM JNA 51, 2309 (2013).
    • [27] C. B. Macdonald, C. B. B. Merriman, and S. J. Ruuth, Proc. Natl. Acad. Sci. USA 110, 9209 (2013).
    • [28] C. B. Macdonald and S. J. Ruuth, SIAM J. Sci. Comput. 31, 4330 (2010).
    • [29] P. K. Maini, E. J. Crampin, A. Madzvamuse, A. J. Wathen, and R. D. K. Thomas, in Proceedings of the 5th European Conference for Mathematics and Theoretical Biology, Milan, Italy, edited by V. Capaso (Societa` Editrice Esculapio, Milan, Italy, 2002).
    • [30] M. A. J. Chaplain, M. Ganesh, and I. G. Graham, J. Math. Biol. 42, 387 (2001).
    • [31] R. Barreira, C. M. Elliott, and A. Madzvamuse, J. Math. Biol. 63, 1095 (2011).
    • [32] G. Dziuk and C. M. Elliott, J. Comp. Math. 25, 385 (2007).
    • [33] G. Dziuk and C. M. Elliott, Acta Numer. 22, 289 (2013).
    • [34] G. Dziuk and C. M. Elliott, Interfaces Free Bound. 10, 119 (2008).
    • [35] G. Dziuk and C. M. Elliott, Comput. Vis. Sci. 13, 17 (2010).
    • [36] A. Schmidt and K. G. Siebert, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences Vol. 153 (Springer-Verlag, New York, 2003).
    • [37] J. A. Sethian, Level Set Methods and Fast Marching Methods, 2nd ed., Cambridge Monographs on Applied and Computational Mathematics (Cambridge University Press, Cambridge, 1999).
    • [38] K. Deckelnick, G. Dziuk, and C. M. Elliott, Acta Numer. 14, 139 (2005).
    • [39] C. M. Elliott, B. Stinner, V. Styles, and R. Welford, IMA J. Numer. Anal. 31, 786 (2011).
    • [40] D. A. Calhoun and C. Helzel, SIAM J. Sci. Comput. 31, 4066 (2010).
    • [41] J. B. Greer, A. L. Bertozzi, and G. Sapiro, J. Comput. Phys. 216, 216 (2006).
    • [42] S. E. Hieber and P. Koumoutsakos, J. Comput. Phys. 210, 342 (2005).
    • [43] I. Prigogine and R. Lefever, J. Chem. Phys. 48, 1695 (1968).
    • [44] J. Schnakenberg, J. Theor. Biol. 81, 389 (1979).
    • [45] A. Madzvamuse, A. J. Wathen, and P. K. Maini, J. Sci. Comp. 24, 247 (2005).
    • [46] A. Madzvamuse, J. Comp. Phys. 214, 239 (2006).
    • [47] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2nd ed. (PWS Publishing Co., Philadelphia PA, 2003).
    • [48] A. Schmidt and K. G. Siebert, Design of Adaptive Element Software: The Finite Element Toolbox ALBERTA, Lecture Notes in Computational Science and Engineering Vol. 42 (Springer, Berlin, Heidelberg, New York, 2005).
    • [49] F. J. Blom, Int. J. Numer. Meth. Fluids 32, 647 (2000).
    • [50] J. T. Batina, AIAA J. 28, 1381 (1990).
    • [51] A. Ra¨tz and M. Ro¨ger, J. Math. Biol. 65, 1215 (2012).
    • [52] A. Ra¨tz and M. Ro¨ger, arXiv:1305.6172v1 (2013).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article