Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mello, Marcio Pupin; Risso, Joel; Atzberger, Clement; Aplin, Paul; Pebesma, Edzer; Vieira, Carlos Antonio Oliveira; Rudorff, Bernardo Friedrich Theodor (2013)
Publisher: MDPI
Journal: Remote Sensing
Languages: English
Types: Article
Subjects: ancillary data, Q, Belief network, weights of evidence, Science, remote sensing, soybean mapping
This paper describes the basis functioning and implementation of a computer-aided Bayesian Network (BN) method that is able to incorporate experts’ knowledge for the benefit of remote sensing applications and other raster data analyses: Bayesian Network for Raster Data (BayNeRD). Using a case study of soybean mapping in Mato Grosso State, Brazil, BayNeRD was tested to evaluate its capability to support the understanding of a complex phenomenon through plausible reasoning based on data observation. Observations made upon Crop Enhanced Index (CEI) values for the current and previous crop years, soil type, terrain slope, and distance to the nearest road and water body were used to calculate the probability of soybean presence for the entire Mato Grosso State, showing strong adherence to the official data. CEI values were the most influencial variables in the calculated probability of soybean presence, stating the potential of remote sensing as a source of data. Moreover, the overall accuracy of over 91% confirmed the high accuracy of the thematic map derived from the calculated probability values. BayNeRD allows the expert to model the relationship among several observed variables, outputs variable importance information, handles incomplete and disparate forms of data, and offers a basis for plausible reasoning from observations. The BayNeRD algorithm has been implemented in R software and can be found on the internet.\ud \ud \ud \ud \ud \ \ud \ud and
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Melesse, A.M.; Weng, Q.; Thenkabail, P.S.; Senay, G.B. Remote sensing sensors and applications in environmental resources mapping and modelling. Sensors 2007, 7, 3209-3241.
    • 2. Donner, R.; Barbosa, S.; Kurths, J.; Marwan, N. Understanding the earth as a complex system-Recent advances in data analysis and modelling in Earth sciences. Eur. Phys. J. Spec. Top. 2009, 174, 1-9.
    • 3. Li, Z., Chen, J., Baltsavias, E., Eds. Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book, 1st ed.; CRC Press: Trowbridge, UK, 2008; Volume 23, p. 546.
    • 4. Lee, C.A.; Gasster, S.D.; Plaza, A.; Chang, C.-I.; Huang, B. Recent developments in high performance computing for remote sensing: A review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 508-527.
    • 5. Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823-870.
    • 6. Richards, J.A. Analysis of remotely sensed data: The formative decades and the future. IEEE Trans. Geosci. Remote Sens. 2005, 43, 422-432.
    • 7. Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, UK, 2003; p. 727.
    • 8. McGrayne, S.B. The Theory that would not Die: How Bayes' Rule Cracked the Enigma Code, Hunted down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy; Yale University Press: New Haven, CT, USA, 2011; p. 336.
    • 9. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 1st ed.; Morgan Kaufmann: San Francisco, CA, USA, 1988; p. 552.
    • 10. Jensen, F.V.; Nielsen, T.D. Bayesian Networks and Decision Graphs, 2nd ed.; Springer: New York, NY, USA, 2007; p. 447.
    • 11. Neapolitan, R.E. Learning Bayesian Networks; Prentice Hall: Upper Saddle River, NJ, USA, 2003; p. 674.
    • 12. Darwiche, A. Modeling and Reasoning with Bayesian Networks; Cambridge University Press: New York, NY, USA, 2009; p. 560.
    • 13. Heckerman, D. Bayesian networks for data mining. Data Min. Knowl. Discov. 1997, 1, 79-119.
    • 14. Uusitalo, L. Advantages and challenges of Bayesian networks in environmental modelling. Ecol. Model. 2007, 203, 312-318.
    • 15. Aguilera, P.A.; Fernández, A.; Fernández, R.; Rumí, R.; Salmerón, A. Bayesian networks in environmental modelling. Environ. Model. Softw. 2011, 26, 1376-1388.
    • 16. Garrett, R.D.; Lambin, E.F.; Naylor, R.L. Land institutions and supply chain configurations as determinants of soybean planted area and yields in Brazil. Land Use Policy 2013, 31, 385-396.
    • 17. Park, S.; McSweeney, K.; Lowery, B. Identification of the spatial distribution of soils using a process-based terrain characterization. Geoderma 2001, 103, 249-272.
    • 18. Cooper, G.F.; Herskovits, E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 1992, 9, 309-347.
    • 19. Mello, M.P.; Rudorff, B.F.T.; Adami, M.; Rizzi, R.; Aguiar, D.A.; Gusso, A.; Fonseca, L.M.G. A Simplified Bayesian Network to Map Soybean Plantations. In Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25-30 July 2010; pp. 351-354.
    • 20. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013.
    • 21. Crawley, M.J. The R Book; John Wiley & Sons: Chichester, UK, 2007; p. 950.
    • 22. Bivand, R.S.; Pebesma, E.J.; Gómez-Rubio, V. Applied Spatial Data Analysis with R; Springer: New York, NY, USA, 2008; p. 378.
    • 23. Albert, J. Bayesian Computation with R, 2nd ed.; Springer: New York, NY, USA, 2009; p. 298.
    • 24. Balov, N.; Salzman, P. catnet: Categorical Bayesian Network Inference. R Package Version 1.14.2. Available online: http://CRAN.R-project.org/package=catnet (accessed on 18 August 2013).
    • 25. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79-86.
    • 26. Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561-577.
    • 27. Altman, D.G.; Bland, J.M. Statistics notes: Diagnostic tests 1: Sensitivity and specificity. BMJ 1994, 308, 1552-1552.
    • 28. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 1960, 20, 37-46.
    • 29. Hudson, W.D. Correct formulation of the Kappa coefficient of agreement. Photogramm. Eng. Remote Sens. 1987, 53, 421-422.
    • 30. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Pratices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; p. 183.
    • 31. CONAB. Séries Históricas Relativas às Safras 1976/77 a 2011/2012 de Área Plantada, Produtividade e Produção. Available online: http://www.conab.gov.br/conteudos.php?a=1252&t= (accessed on 21 March 2013).
    • 32. BRASIL. Resolução da Presidência do IBGE de n° 5 (R.PR-5/02) de 10 de outubro de 2002; Diário Oficial da União: Brasília, DF, Brazil, 2002; pp. 48-69.
    • 33. Epiphanio, R.D.V.; Formaggio, A.R.; Rudorff, B.F.T.; Maeda, E.E.; Luiz, A.J.B. Estimating soybean crop areas using spectral-temporal surfaces derived from MODIS images in Mato Grosso, Brazil. Pesquisa Agropecuária Brasileira 2010, 45, 72-80.
    • 34. FAO. FAOSTAT: FAO Statistical Database. Available online: http://faostat.fao.org (accessed on 9 April 2012).
    • 35. Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949-981.
    • 36. Rudorff, B.F.T.; Aguiar, D.A.; Silva, W.F.; Sugawara, L.M.; Adami, M.; Moreira, M.A. Studies on the rapid expansion of sugarcane for ethanol production in São Paulo State (Brazil) using Landsat data. Remote Sens. 2010, 2, 1057-1076.
    • 37. Rizzi, R.; Rudorff, B.F.T. Estimativa da área de soja no Rio Grande do Sul por meio de imagens Landsat. Revista Brasileira de Cartografia 2005, 57, 226-234.
    • 38. Vieira, M.A.; Formaggio, A.R.; Rennó, C.D.; Atzberger, C.; Aguiar, D.A.; Mello, M.P. Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 2012, 123, 553-562.
    • 39. Mello, M.P.; Vieira, C.A.O.; Rudorff, B.F.T.; Aplin, P.; Santos, R.D.C.; Aguiar, D.A. STARS: A new method for multitemporal remote sensing. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1897-1913.
    • 40. Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 2001, 22, 3855-3862.
    • 41. Sano, E.E.; Ferreira, L.G.; Asner, G.P.; Steinke, E.T. Spatial and temporal probabilities of obtaining cloud-free Landsat images over the Brazilian tropical savanna. Int. J. Remote Sens. 2007, 28, 2739-2752.
    • 42. Arvor, D.; Jonathan, M.; Meirelles, M.S.P.; Dubreuil, V.; Durieux, L. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 2011, 32, 7847-7871.
    • 43. Macedo, M.N.; DeFries, R.S.; Morton, D.C.; Stickler, C.M.; Galford, G.L.; Shimabukuro, Y.E. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl. Acad. Sci. USA 2012, 109, 1341-1346.
    • 44. Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Arai, E.; del Bon Espirito-Santo, F.; Freitas, R.M.; Morisette, J. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 14637-14641.
    • 45. Justice, C.; Townshend, J.R.G.; Vermote, E.; Masuoka, E.; Wolfe, R.; Saleous, N.; Roy, D.; Morisette, J. An overview of MODIS land data processing and product status. Remote Sens. Environ. 2002, 83, 3-15.
    • 46. Rizzi, R.; Risso, J.; Epiphanio, R.D.V.; Rudorff, B.F.T.; Formaggio, A.R.; Shimabukuro, Y.E.; Fernandes, S.L. Estimativa da área de Soja no Mato Grosso por meio de Imagens MODIS. In Proceedings of the 14th Brazilian Remote Sensing Symposium, Natal, RN, Brazil, 25-30 April 2009; INPE: São José dos Campos, SP, Brazil, 2009; pp. 387-394.
    • 47. Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195-213.
    • 48. Risso, J. Diagnóstico Espacialmente Explícito da Expansão da Soja no Mato Grosso de 2000 a 2012; National Institute for Space Research: São José dos Campos, SP, Brazil, 2013; p. 110.
    • 49. SEPLAN-MT. Sistema Interoperável de Informações Geoespaciais do Estado do Mato Grosso (SIIGEO). Available online: http://www.siigeo.mt.gov.br/ (accessed on 14 April 2012).
    • 50. Palmiere, F.; Santos, H.G.; Gomes, I.A.; Lumbreras, J.F.; Aglio, M.M.D. The Brazilian Soil Classification System. In Soil Classification: A Global Desk Reference; Rice, T., Eswaran, H., Stewart, B., Ahrens, R., Eds.; CRC Press: Boca Raton, FL, USA, 2002; pp. 127-146.
    • 51. Sistema Brasileiro de Classificação de Solos, 2nd ed.; Santos, H.G., Oliveira, J.B., Lumbrelas, J.F., Anjos, L.H.C., Coelho, M.R., Jacomine, P.K.T., Cunha, T.J.F., Oliveira, V.Á., Eds.; Embrapa Solos: Rio de Janeiro, RJ, Brazil, 2006; p. 306.
    • 52. Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission-A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241-262.
    • 53. Shaxson, F. New Concepts and Approaches to Land Management in the Tropics with Emphasis on Steeplands; FAO: Rome, Italy, 1999; p. 125.
    • 54. Seeruttun, S.; Crossley, C.P. Use of digital terrain modelling for farm planning for mechanical harvest of sugar cane in Mauritius. Comput. Electron. Agric. 1997, 18, 29-42.
    • 55. ANEEL. Sistema de Informações Georeferenciadas do Setor Elétrico (SIGEO). Available online: http://sigel.aneel.gov.br (accessed on 20 April 2012).
    • 56. Silva, J.A.A.; Nobre, A.D.; Joly, C.A.; Nobre, C.A.; Manzatto, C.V.; Rech Filho, E.L.; Skorupa, L.A.; May, P.H.; Cunha, M.M.L.C.; Rodrigues, R.R.; et al. Brazil Forest Code and Science: Contributions to the Dialogue, 2nd ed.; The Brazilian Society for the Advancement of Science-SBPC: São Paulo, SP, Brazil, 2012; p. 147.
    • 57. IBGE. Maps. Available online: http://mapas.ibge.gov.br/en/ (accessed on 29 April 2012).
    • 58. Fearnside, P.M. Soybean cultivation as a threat to the environment in Brazil. Environ. Conserv. 2002, 28, 23-38.
    • 59. INPE. PRODES: Projeto de Monitoramento do Desflorestamento na Amazônia Legal. Available online: http://www.obt.inpe.br/prodes/index.php (accessed on 20 January 2012).
    • 60. Shimabukuro, Y.E.; Batista, G.T.; Mello, E.M.K.; Moreira, J.C.; Duarte, V. Using shade fraction image segmentation to evaluate deforestation in Landsat Thematic Mapper images of the Amazon Region. Int. J. Remote Sens. 1998, 19, 535-541.
    • 61. FUNAI. Maps. Available online: http://mapas.funai.gov.br (accessed on 20 January 2013).
    • 62. MMA. Download de Dados Geográficos. Available online: http://mapas.mma.gov.br/i3geo/ datadownload.htm (accessed on 20 January 2013).
    • 63. Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576-587.
    • 64. Risso, J.; Rizzi, R.; Rudorff, B.F.T.; Adami, M.; Shimabukuro, Y.E.; Formaggio, A.R.; Epiphanio, R.D.V. Índices de vegetação Modis aplicados na discriminação de áreas de soja. Pesquisa Agropecuária Brasileira 2012, 47, 1317-1326.
    • 65. Rudorff, B.F.T.; Adami, M.; Risso, J.; de Aguiar, D.A.; Pires, B.; Amaral, D.; Fabiani, L.; Cecarelli, I. Remote sensing images to detect soy plantations in the amazon biome-The soy moratorium initiative. Sustainability 2012, 4, 1074-1088.
    • 66. Rudorff, B.F.T.; Adami, M.; Aguiar, D.A.; Moreira, M.A.; Mello, M.P.; Fabiani, L.; Amaral, D.F.; Pires, B.M. The soy moratorium in the Amazon biome monitored by remote sensing images. Remote Sens. 2011, 3, 185-202.
    • 67. IBGE. Sistema IBGE de Recuperação Automática (SIDRA)-Produção Agrícola Municipal (PAM) 2012. Avaiable online: http://www.sidra.ibge.gov.br (accessed on 2 July 2012).
    • 68. Jepson, W. Producing a modern agricultural frontier: Firms and cooperatives in Eastern Mato Grosso, Brazil. Econ. Geogr. 2009, 82, 289-316.
    • 69. Rizzi, R.; Rudorff, B.F.T.; Shimabukuro, Y.E.; Doraiswamy, P.C. Assessment of MODIS LAI retrievals over soybean crop in Southern Brazil. Int. J. Remote Sens. 2006, 27, 4091-4100.
    • 70. Jasinski, E.; Morton, D.; DeFries, R.; Shimabukuro, Y.; Anderson, L.; Hansen, M. Physical landscape correlates of the expansion of mechanized agriculture in Mato Grosso, Brazil. Earth Interact. 2005, 9, 1-18.
    • 71. Soares-Filho, B.S.; Nepstad, D.C.; Curran, L.M.; Cerqueira, G.C.; Garcia, R.A.; Ramos, C.A.; Voll, E.; McDonald, A.; Lefebvre, P.; Schlesinger, P. Modelling conservation in the Amazon basin. Nature 2006, 440, 520-523.
    • 72. Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185-201.
    • 73. Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote Sens. Environ. 2007, 107, 606-616.
    • 74. Smits, P.C.; Dellepiane, S.G.; Schowengerdt, R.A. Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach. Int. J. Remote Sens. 1999, 20, 1461-1486.
    • 75. Foody, G.M. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens. Environ. 2010, 114, 2271-2285.
    • 76. Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29-36.
    • 77. Krug, L.A.; Gherardi, D.F.M.; Stech, J.L.; Leão, Z.M.A.N.; Kikuchi, R.K.P.; Hruschka, E.R.; Suggett, D.J. The construction of causal networks to estimate coral bleaching intensity. Environ. Model. Softw. 2013, 42, 157-167.
    • 78. Silvestrini, R.A.; Soares-Filho, B.S.; Nepstad, D.; Coe, M.; Rodrigues, H.; Assunção, R. Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecol. Appl. Public. Ecol. Soc. Am. 2011, 21, 1573-1590.
    • 79. Aragão, L.E.O.C.; Malhi, Y.; Barbier, N.; Lima, A.; Shimabukuro, Y.; Anderson, L.; Saatchi, S. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2008, 363, 1779-1785.
    • 80. Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng. Geol. 2008, 102, 99-111.
    • 81. Oliveira, F.S.C.; Gherardi, D.F.M.; Stech, J.L. The relationship between multi-sensor satellite data and Bayesian estimates for skipjack tuna catches in the South Brazil Bight. Int. J. Remote Sens. 2010, 31, 4049-4067.
    • 82. Li, L.; Wang, J.; Leung, H.; Jiang, C. Assessment of catastrophic risk using Bayesian network constructed from domain knowledge and spatial data. Risk Anal. 2010, 30, 1157-1175.
    • 83. Rodrigues, E.C.; Assunção, R. Bayesian spatial models with a mixture neighborhood structure. J. Multivar. Anal. 2012, 109, 88-102.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article