LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Peiris, D.; Ossondo, M.; Fry, S.; Loizidou, M.; Smith-Ravin, J.; Dwek, M. V. (2015)
Publisher: Public Library of Science
Journal: PLoS ONE
Languages: English
Types: Article
Subjects: Q, R, UOWSAT, Research Article, Science, Medicine
BACKGROUND: Protein glycosylation is an important post-translational modification shown to be altered in all tumour types studied to date. Mucin glycoproteins have been established as important carriers of O-linked glycans but other glycoproteins exhibiting altered glycosylation repertoires have yet to be identified but offer potential as biomarkers for metastatic cancer. METHODOLOGY: In this study a glycoproteomic approach was used to identify glycoproteins exhibiting alterations in glycosylation in colorectal cancer and to evaluate the changes in O-linked glycosylation in the context of the p53 and KRAS (codon 12/13) mutation status. Affinity purification with the carbohydrate binding protein from Helix pomatia agglutinin (HPA) was coupled to 2-dimensional gel electrophoresis with mass spectrometry to enable the identification of low abundance O-linked glycoproteins from human colorectal cancer specimens. RESULTS: Aberrant O-linked glycosylation was observed to be an early event that occurred irrespective of the p53 and KRAS status and correlating with metastatic colorectal cancer. Affinity purification using the lectin HPA followed by proteomic analysis revealed annexin 4, annexin 5 and CLCA1 to be increased in the metastatic colorectal cancer specimens. The results were validated using a further independent set of specimens and this showed a significant association between the staining score for annexin 4 and HPA and the time to metastasis; independently (annexin A4: Chi square 11.45, P = 0.0007; HPA: Chi square 9.065, P = 0.0026) and in combination (annexin 4 and HPA combined: Chi square 13.47; P = 0.0002). CONCLUSION: Glycoproteins showing changes in O-linked glycosylation in metastatic colorectal cancer have been identified. The glycosylation changes were independent of p53 and KRAS status. These proteins offer potential for further exploration as biomarkers and potential targets for metastatic colorectal cancer.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Schima W, Kulinna C, Langenberger H, Ba-Ssalamah A. Liver metastases of colorectal cancer: US, CT or MR? Cancer Imag. 2005, 5:S149-S155
    • 2. Brooks SA, Leathem AJC, Prediction of lymph node involvement in breast cancer by detection of altered glycosylation in the primary tumour, Lancet. 1991, 338:71-74. PMID: 1712062
    • 3. Ghazarian H, Idoni B, Oppenheimer SB, A glycobiology review: carbohydrates, lectins, and implications in cancer therapeutics, Acta Histochem. 2011, 113:236-247. doi: 10.1016/j.acthis.2010.02.004 PMID: 20199800
    • 4. Bhattacharyya L, Brewer CF, Lectin-carbohydrate interactions. Studies of the nature of hydrogen bonding between D-galactose and certain D-galactose-specific lectins, and between D-mannose and concanavalin A, Euro. J. Biochem. 1988, 176:207-212.
    • 5. Sanchez JF, Lescar J, Chazalet V, Audfray A, Gagnon J, Alvarez R, et al, Biochemical and structural analysis of Helix pomatia agglutinin-A hexameric lectin with a novel fold, J Biol. Chem. 2006, 281:20171-20180. PMID: 16704980
    • 6. Markiv A, Peiris D, Curley GP, Odell M, Dwek MV., Identification, cloning, and characterization of two N-acetylgalactosamine-binding lectins from the albumen gland of Helix pomatia, J. Biol. Chem. 2011, 286: 20260-20266. doi: 10.1074/jbc.M110.184515 PMID: 21372134
    • 7. Leathem A, Dokal I, Atkins N, Lectin binding to normal and malignant breast tissue, Diagn. Histopathol. 1983, 6: 171-180.
    • 8. Fukutomi T, et al, Prognostic contributions of Helix pomatia and carcinoembryonic antigen staining using histochemical techniques in breast carcinomas, Jpn. J. Clin. Onco. 1989, 19: 127-134.
    • 9. Ikeda Y, Itabashi M, Tsugane S, Yamamoto H, Nanasawa T, Hirota T., Prognostic value of the histochemical expression of Helix pomatia agglutinin in advanced colorectal cancer; A univariate and multivariate analysis. Dis. Colon Rectum. 1994, 37: 181-184. PMID: 8306842
    • 10. Schumacher U, Mukhtar D, Stehling P, Reutter W., Is the lectin binding pattern of human breast and colon cancer cells influenced by modulators of sialic acid metabolism? Histochem. Cell Biol. 1996, 106: 599-604. PMID: 8985749
    • 11. Schnegelsberg B, Schumacher U, Valentiner U, Lectin histochemisry of metastasizing and Non-metastasizing breast and colon cells, Anticancer Res. 2011, 31:1589-1598. PMID: 21617214
    • 12. Saint-Guirons J, Zeqiraj E, Schumacher U, Greenwell P, Dwek M., Proteome analysis of metastatic colorectal cancer cells recognised by the lectin Helix pomatia agglutinin (HPA), Proteomics, 2007: 7: 4802-4809.
    • 13. Rambaruth NDS, Greenwell P, Dwek MV, The lectin Helix pomatia agglutinin recognises O-GlcNAc containing glycoproteins in human breast cancer, Glycobiology 2012, 22: 839-848. doi: 10.1093/ glycob/cws051 PMID: 22322011
    • 14. Laemmli UK, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 1970, 227: 680-685. PMID: 5432063
    • 15. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, et al, Blue Silver: A very sensitive colloidal coomassie G-250 staining for proteome analysis, Electrophoresis, 2004, 25:1327- 1333. PMID: 15174055
    • 16. Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, et al, The current state of twodimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000, 21: 1037-1053. PMID: 10786879
    • 17. Arrington AK, Heinrich EL, Lee W, Duldulao M, Patel S, Sanchez J, et al, Prognostic and Predictive Roles of KRAS Mutation in Colorectal Cancer, Int. J. Mol. Sci. 2012, 13: 12153-12168 doi: 10.3390/ ijms131012153 PMID: 23202889
    • 18. Markiv A, Rambaruth ND, Dwek MV, Beyond the genome and proteome: targeting protein modifications in cancer, Curr. Opin Pharmacol. 2012, 12: 408-413. doi: 10.1016/j.coph.2012.04.003 PMID: 22560919
    • 19. Rambaruth NDS, Dwek MV, Cell surface glycan-lectin interactions in tumor metastasis, Acta Histochem. 2011, 113: 591-600. doi: 10.1016/j.acthis.2011.03.001 PMID: 21501858
    • 20. Kim Y, Son OL, Lee JY, Kim SH, Oh S, Lee YS, et al, Lectin precipitation using phytohemagglutinin-L4 coupled to avidin-agarose for serological biomarker discovery in colorectal cancer, Proteomics 2008, 8: 3229-3235. doi: 10.1002/pmic.200800034 PMID: 18633972
    • 21. Drake MP, Cho W, Li B, Prakobphol A, Johansen E, Anderson NL, et al, Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin. Chem. 2010, 56: 223-236. doi: 10.1373/ clinchem.2009.136333 PMID: 19959616
    • 22. Schumacher U, Higgs D, Loizidou M, Pickering R, Leathem A, Taylor I., Helix pomatia binding is a useful prognostic indicator in colorectal carcinoma, Cancer 1994, 74: 3104-3107. PMID: 7982174
    • 23. Brooks SA, Lymboura M, Schumacher U, Leathem AJ., Breast cancer: methodology makes a difference, J. Histochem. Cytochem. 1996, 44: 519-524. PMID: 8627008
    • 24. Moss SE, Morgan RO, The Annexins, Genome Biol. 2004, 5: 219.1-219.9 PMID: 15059252
    • 25. Gerke V, Moss SE, Annexins: from structure to function, Physiol. Rev. 2002, 82: 331-371.
    • 26. Yeoh L, Dharmaraj S, Gooi BH, Singh M, Gam LH., Chemometrics of differentially expressed proteins from colorectal cancer patients. World J. Gastroentero. 2011, 28: 2096-2103.
    • 27. Alfonso P, Cañamero M, Fernández-Carbonié F, Núñez A, Casal JI., Proteome analysis of membrane fractions in colorectal carcinomas by using 2-DE-DIGE saturation labelling, J. Proteome Res. 2008, 7: 4247-4255. doi: 10.1021/pr800152u PMID: 18707159
    • 28. Duncan R, Carpenter B, Main LC, Telfer C, Murray GI, Characterisation and protein expression profiling of annexins in colorectal cancer, Br J. Cancer. 2008, 98: 426-433. PMID: 18071363
    • 29. Zimmerman U, Balabanov S, Giebel J, Teller S, Junker H, Schmoll D, Protzel C, et al, Increased expression and altered location of annexin A4 in renal clear cell carcinoma: a possible role in tumour dissemination, Cancer Lett. 2004, 209: 111-118. PMID: 15145526
    • 30. Zhang X, Liu S, Guo C, Zong J, Sun MZ, The association of annexin A2 and cancers. Clin. Transl. Oncol. 2012, 14: 634-640. doi: 10.1007/s12094-012-0855-6 PMID: 22855149
    • 31. Guzman-Aranguez A, Olmo N, Turnay J, Lecona E, Pérez-Ramos P, López de Silanes I, et al, Differentiation of human colon adenocarcinoma cells alters the expression and intracellular localization of annexins A1, A2, and A5, J. Cell Biochem. 2005, 94: 178-193. PMID: 15526283
    • 32. Xue G, Hao LQ, Ding FX, Mei Q, Huang JJ, Fu CG, et al, Expression of Annexin A5 is associated with higher tumour stage and poor prognosis in colorectal adenocarcinomas, J. Clin. Gastroenterol. 2009, 43: 831-837. doi: 10.1097/MCG.0b013e31819cc731 PMID: 19461527
    • 33. Bustin SA, Li SR, Dorudi S, Expression of the Ca2+-activated chloride channel genes CLCA1 and CLCA2 is downregulated in human colorectal cancer, DNA Cell. Biol. 2001, 20: 331-338. PMID: 11445004
    • 34. Abdel-Ghany M, Cheng HC, Elble RC, Pauli BU, The breast cancer β4 integrin and endothelial human CLCA2 mediate lung metastasis, J. Biol. Chem. 2001, 276: 25438-25446. PMID: 11320086
    • 35. Hart G, Slawson C, Ramirez-Correa G, Lagerlof O, Crosstalk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription and chronic disease, Annu. Rev. Biochem. 2011, 80: 825-858. doi: 10.1146/annurev-biochem-060608-102511 PMID: 21391816
    • 36. Yehezkel G, Cohen L, Kliger A, Manor E, Khalaila I, O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) in primary and metastatic colorectal cancer clones and effect of N-acetyl-β-D-glucosaminidase silencing on cell phenotype and transcriptome, J. Biol. Chem. 2012, 287: 28755-28769. doi: 10.1074/ jbc.M112.345546 PMID: 22730328
    • 37. Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, et al, Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability, Nat. Cell Biol. 2006, 8: 1074-1083. PMID: 16964247
    • 38. Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X, Cong Q, et al, O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy, Biochim. Biophys. Acta. 2011, 1812: 514-519. doi: 10.1016/j.bbadis. 2011.01.009 PMID: 21255644
    • 39. Kijima M, Togo S, Ichikawa Y, Miura M, Yamagishi S, Matsuo K, et al, Clinical significance of serum CEA protein and CEA mRNA after resection of colorectal liver metastases, Anticancer Res. 2005, 25: 1327-1332. PMID: 15865086
    • 40. Li N, Chen X, Wan X, Luo X, Han L, Zhou M, Yin D, et al, Relationship between expression of CEA, Ecadherin and liver metastasis in colorectal cancer, Chin. J. Clin. Oncol. 2008, 5:429-432.
  • No similar publications.

Share - Bookmark

Cite this article