LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhou, X.-Y.; Gosling, P.D.; Pearce, C.J.; Ullah, Z.; Kaczmarczyk, L. (2015)
Publisher: Elsevier
Journal: International Journal of Solids and Structures
Languages: English
Types: Article
Subjects: Materials Science(all), Applied Mathematics, Mechanical Engineering, Condensed Matter Physics, Modelling and Simulation, Mechanics of Materials
In this paper, a stochastic homogenization method that couples the state-of-the-art computational multi-scale homogenization method with the stochastic finite element method, is proposed to predict the statistics of the effective elastic properties of textile composite materials. Uncertainties associated with the elastic properties of the constituents are considered. Accurately modeling the fabric reinforcement plays an important role in the prediction of the effective elastic properties of textile composites due to their complex structure. The p-version finite element method is adopted to refine the analysis. Performance of the proposed method is assessed by comparing the mean values and coefficients of variation for components of the effective elastic tensor obtained from the present method against corresponding results calculated by using Monte Carlo simulation method for a plain-weave textile composite. Results show that the proposed method has sufficient accuracy to capture the variability in effective elastic properties of the composite induced by the variation of the material properties of the constituents.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ainsworth, M., Coyle, J., 2003. Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Methods Eng. 58 (14), 2103-2130.
    • Barbero, E.J., Damiani, T.M., Trovillion, J., 2005. Micromechanics of fabric reinforced composites with periodic microstructure. Int. J. Solids Struct. 42 (9-10), 2489- 2504.
    • Carvelli, V., Poggi, C., 2001. A homogenization procedure for the numerical analysis of woven fabric composites. Compos. Part A: Appl. Sci. Manuf. 32 (10), 1425-1432.
    • Chou, T.W., Ishikawa, T., 1983. One-dimensional micromechanical analysis of woven fabric composites. AIAA J. 21 (12), 1714-1721.
    • Clément, A., Soize, C., Yvonnet, J., 2012. Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis. Int. J. Numer. Methods Eng. 91 (8), 799-824.
    • Clément, A., Soize, C., Yvonnet, J., 2013. Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Comput. Methods Appl. Mech. Eng. 254 (0), 61-82.
    • Fillep, S., Mergheim, J., Steinmann, P., 2013. Computational modelling and homogenization of technical textiles. Eng. Struct. 50 (0), 68-73.
    • Filleppa, C.A., Haugen, B., 2005. A unified formulation of small-strain corotational finite elements: I. theory. Comput. Methods Appl. Mech. Eng. 194, 2285-2335.
    • Gager, J., Pettermann, H.E., 2012. Numerical homogenization of textile composites based on shell element discretization. Compos. Sci. Technol. 72 (7), 806-812.
    • Ghanem, R.G., Spanos, P.D., 2003. Stochastic finite elements: a spectral approach. Courier Dover Publications.
    • Gommers, B., Verpoest, I., Van Houtte, P., 1998. The Mori-Tanaka method applied to textile composite materials. Acta Mater. 46 (6), 2223-2235.
    • Ishikawa, T., Chou, T.W., 1982. Stiffness and strength behaviour of woven fabric composites. J. Mater. Sci. 17 (11), 3211-3220.
    • Ivanov, I., Tabiei, A., 2001. Three-dimensional computational micro-mechanical model for woven fabric composites. Compos. Struct. 54 (4), 489-496.
    • Kaczmarczyk, L., Pearce, C.J., Bic´ anic´ , N., 2008. Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. Int. J. Numer. Methods Eng. 74 (3), 506-522.
    • Kaczmarczyk et al., 2014. Mesh Oriented Finite Element Method (MoFEM), Version 0.1.4. University of Glasgow. Glasgow, UK.
    • Kami n´ski, M., 2007. Generalized perturbation-based stochastic finite element method in elastostatics. Comput. Struct. 85 (10), 586-594.
    • Kami n´ski, M., 2013. The stochastic perturbation method for computational mechanics. John Wiley & Sons.
    • Kami n´ski, M., Kleiber, M., 2000. Perturbation based stochastic finite element method for homogenization of two-phase elastic composites. Comput. Struct. 78 (6), 811- 826.
    • Kleiber, M., Hien, T.D., 1992. The stochastic finite element method - Basic perturbation technique and computer implementation. John Wiley & Sons.
    • Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T., 2001. An approach to micromacro modeling of heterogeneous materials. Comput. Mech. 27 (1), 37-48.
    • Matthies, H.G., 2007. Uncertainty Quantification with Stochastic Finite Elements. John Wiley & Sons, Ltd, pp. 1-36.
    • Michel, J.C., Moulinec, H., Suquet, P., 1999. Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172 (14), 109-143.
    • Miehe, C., Koch, A., 2002. Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch. Appl. Mech. 72 (4-5), 300-317.
    • Naik, R., 1994. Analysis of woven and braided fabric reinforced composites. Report NASA Contractor Report 194930. Analytical Services & Materials, Inc..
    • Peng, X., Cao, J., 2002. A dual homogenization and finite element approach for material characterization of textile composites. Compos. Part B: Eng. 33 (1), 45-56.
    • Peric´ , D., de Souza Neto, E.A., Feijo, R.A., Partovi, M., Molina, A.J.C., 2011. On micro-tomacro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation. Int. J. Numer. Methods Eng. 87 (1-5), 149-170.
    • Sakata, S., Ashida, F., Kojima, T., 2008. Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method. Int. J. Solids Struct. 45 (2526), 6553-6565.
    • Sakata, S., Ashida, F., Kojima, T., Zako, M., 2008. Three-dimensional stochastic analysis using a perturbation-based homogenization method for elastic properties of composite material considering microscopic uncertainty. Int. J. Solids Struct. 45 (34), 894-907.
    • Sankar, B.V., Marrey, R.V., 1997. Analytical method for micromechanics of textile composites. Compos. Sci. Technol. 57 (6), 703-713.
    • Scida, D., Aboura, Z., Benzeggagh, M.L., Bocherens, E., 1999. A micromechanics model for 3D elasticity and failure of woven-fibre composite materials. Compos. Sci. Technol. 59 (4), 505-517.
    • Slawinski, M.A., 2010. Waves and rays in elastic continua. World Scientific.
    • Spanos, P.D., Kontsos, A., 2008. A multiscale monte carlo finite element method for determining mechanical properties of polymer nanocomposites. Probab. Eng. Mech. 23 (4), 456-470.
    • Sriramula, S., Chryssanthopoulos, M.K., 2009. Quantification of uncertainty modelling in stochastic analysis of FRP composites. Compos. Part A: Appl. Sci. Manuf. 40 (11), 1673-1684.
    • Stig, F., Hallstrm, S., 2012. A modelling framework for composites containing 3D reinforcement. Compos. Struct. 94 (9), 2895-2901.
    • Sudret, B., Der Kiureghian, A., 2000. Stochastic finite element methods and reliability: a state-of-the-art report. Report Technical Report no UCB/SEMM-2000/08. University of California, Berkeley.
    • Tootkaboni, M., Graham-Brady, L., 2010. A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties. Int. J. Numer. Methods Eng. 83 (1), 59-90.
    • Vandeurzen, P., Ivens, J., Verpoest, I., 1996. A three-dimensional micromechanical analysis of woven-fabric composites: II. elastic analysis. Compos. Sci. Technol. 56 (11), 1317-1327.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article