Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Picas, R.; Pou, J.; Zaragoza, J.; Watson, Alan James; Konstantinou, G.; Ceballos, S.; Clare, Jon C. (2016)
Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Languages: English
Types: Conference object
Subjects: Circuits de commutació, Switching circuits, capacitor voltage ripples, reliability improvement., Electrònica de potència, Convertidors de corrent elèctric, Electric current converters, Modular multilevel converter, :Enginyeria electrònica::Electrònica de potència [Àrees temàtiques de la UPC], power losses, Power electronics
Tolerance and component aging can cause significant differences in the capacitance values of the submodules (SMs) in a modular multilevel converter (MMC). Depending on the modulation technique, capacitance mismatches may produce uneven switching transitions of the SMs, hence imbalances in the power losses that can lead to reliability problems. In this paper, a new algorithm that helps to achieve evenly distributed switching and conduction losses within the converter SMs is presented. The proposed algorithm is based on a modification of the common voltage balancing algorithms, balancing a weighted function of voltage and losses. Even distribution of power losses is achieved at the cost of slightly increasing the capacitor voltage ripples. The effectiveness of the strategy has been demonstrated by simulation results of a high-power grid-connected MMC. Peer Reviewed
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, “Operation, control, and applications of the modular multilevel converter: a review,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 37-53, Mar. 2014.
    • [2] M.A. Perez, S. Bernet, J. Rodriguez, S. Kouro, and R. Lizana, “Circuit topologies, modelling, control schemes and applications of modular multilevel converters,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 4-17, Mar. 2014.
    • [3] K. Friedrich, “Modern HVDC PLUS application of VSC in modular multilevel converter topology,” in Proc. IEEE ISIE, 4-7 Jul. 2010, Bari, Italy, pp. 3807-3810.
    • [4] F. Richardeau and T. Pham,“Reliability calculation of multilevel converters: theory and applications,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4225-4233, Oct. 2013.
    • [5] S. Yang, D. Xiang, A. Bryant, P. Mawby, L. Ran, and P. Tavner, “Condition monitoring for device reliability in power electronic converters: a review,” IEEE Trans. Power Electron., vol. 25, no. 11, pp. 2734-2752, Nov. 2010.
    • [6] V. Smet, F. Forest, J.-J. Huselstein, F. Richardeau, Z. Khatir, S. Lefebvre, and M. Berkani, “Ageing and failure modes of IGBT modules in hightemperature power cycling,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4931-4941, Oct. 2011.
    • [7] U.-M. Choi, F. Blaabjerg, and K.-B. Lee, “Study and handling methods of power IGBT module failures in power electronic converter systems,” IEEE Trans. Power Electron., vol. 30, no. 5, pp. 2517-2533, May 2015.
    • [8] S. Rohner, S. Bernet, M. Hiller, and R. Sommer, “Modulation, losses and semiconductor requirements of modular multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2633-2642, Aug. 2010.
    • [9] A. Scho¨n, A. Birkel, and M.-M. Bakran, “Modulation and losses of modular multilevel converters for HVDC applications,” Proc. PCIM Europe, 20-22 May 2014, Nuremberg, Germany, pp. 1348-1355.
    • [10] K. Harada, A. Katsuki, and M. Fujiwara, “Use of ESR for deterioration diagnoses of electrolytic capacitor,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 355-361, Oct. 1993.
    • [11] K. Abdennadher, P. Venet, R. Rojat, J.-M. Re´tif, and C. Rosset,“A realtime predictive-maintenance system of aluminum electrolytic capacitors used in uninterrupted power supplies,” IEEE Trans. Ind. Appl., vol. 46, no. 4, pp.1644-1652, Jul./Aug. 2010.
    • [12] M. Saeedifard and R. Iravani, “Dynamic performance of a modular multilevel back-to-back HVDC system,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2903-2912, Oct. 2010.
    • [13] R. Darus, J. Pou, G. Konstantinou, S. Ceballos, R. Picas, and V.G. Agelidis, “A modified voltage balancing algorithm for the modular multilevel converter: evaluation for staircase and phase-disposition PWM,” IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4119-4127, Aug. 2015.
    • [14] Q. Tu, Z. Xu, and L. Xu, “Reduced-switching frequency modulation and circulating current suppression for modular multilevel converters,” IEEE Tran. Power Del., vol. 26, no. 3, pp. 2009-2017, Jul. 2011.
    • [15] J. Pou, S. Ceballos, G. Konstantinou, V.G. Agelidis, R. Picas, and J. Zaragoza, “Circulating current injection methods based on instantaneous information for the modular multilevel converter,” IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 777-788, Feb. 2015.
  • No related research data.
  • No similar publications.