LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Akinshina, A; Das, C; Noro, MG (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: Q1, QD

Classified by OpenAIRE into

mesheuropmc: lipids (amino acids, peptides, and proteins)
Monoglycerides and unsaturated fatty acids, naturally present in trace amounts in the stratum corneum (top layer of skin) lipid matrix, are commonly used in pharmaceutical, cosmetic and health care formulations. However, a detailed molecular understanding of how the oil additives get incorporated into the skin lipids from topical application and, once incorporated, how they affect the properties and integrity of the lipid matrix remains unexplored. Using ceramide 2 bilayers as skin lipid surrogates, we use a series of molecular dynamics simulations with six different natural oil ingredients at multiple concentrations to investigate the effect of the oils on the properties and stability of the bilayers. The six oils: monoolein, monostearin, monoelaidin, oleic acid, stearic acid and linoleic acid – all having the same length of the alkyl chain, C18, but a varying degree of saturation, allow us to systematically address the effect of unsaturation in the additives. Our results show that at low oil concentration (∼5%) the mixed bilayers containing any of the oils and ceramide 2 (CER2) become more rigid than pure CER2 bilayers due to more efficient lipid packing. Better packing also results in the formation of larger numbers of hydrogen bonds between the lipids, which occurs at the expense of the hydrogen bonds between lipids and water. The mixed bilayers with saturated or trans-unsaturated oils remain stable over the whole range of oil concentration. In contrast, the presence of the oils with at least one cis-double bond leads to bilayer instability and complete loss of bilayer structure at the oil content of about 50–65%. Two cis-double bonds in the lipid tail induce bilayer disruption at even lower concentration (∼30%). The mixed bilayers remain in the gel phase (without melting to a fluid phase) until the phase transition to a non-bilayer phase occurs. We also demonstrate that the stability of the bilayer strongly correlates with the order parameter of the lipid tails.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 A. S. Michaels, S. K. Chandrasekaran and J. E. Shaw, AIChE J., 1975, 21, 985-996.
    • 2 P. M. Elias, J. Controlled Release, 1991, 15, 199-208.
    • 3 C. R. Harding, Dermatol. Ther., 2004, 17, 6-15.
    • 4 R. R. Wickett and M. O. Visscher, Am. J. Infect. Control, 2006, 34, S98-S110.
    • 5 A. V. Rawlings, I. R. Scott, C. R. Harding and P. A. Bowser, J. Invest. Dermatol., 1994, 103, 731-740.
    • 6 Y. Jokura, S. Ishikawa, H. Tokuda and G. Imokawa, J. Invest. Dermatol., 1995, 104, 806-812.
    • 7 A. V. Rawlings and C. R. Harding, Dermatol. Ther., 2004, 17, 43-48.
    • 8 A. Akinshina, E. Jambon-Puillet, P. B. Warren and M. G. Noro, BMC Biophys., 2013, 6, 12.
    • 9 M. Ponec, A. Weerheim, P. Lankhorst and P. Wertz, J. Invest. Dermatol., 2003, 120, 581-588.
    • 10 J. J. Leyden and A. V. Rawlings, Skin Moisturization, Marcel Dekker, New York, 2002.
    • 11 R. Notman, W. K. den Otter, M. G. Noro, W. J. Briels and J. Anwar, Biophys. J., 2007, 93, 2056-2068.
    • 12 C. Das, M. G. Noro and P. D. Olmsted, Soft Matter, 2014, 10, 7346-7352.
    • 13 C. Das, P. D. Olmsted and M. G. Noro, Soft Matter, 2009, 5, 4549-4555.
    • 14 M. A. Kiselev, N. Y. Ryabova, A. M. Balagurov, S. Dante, T. Hauss, J. Zbytovska, S. Wartewig and R. H. H. Neubert, Eur. Biophys. J., 2005, 34, 1030-1040.
    • 15 J. A. Bouwstra, F. E. R. Dubbelaar, G. S. Gooris and M. Ponec, Acta Derm.-Venereol. Suppl., 2000, 208, 23-30.
    • 16 P. W. Wertz, Acta Derm.-Venereol. Suppl., 2000, 208, 7-11.
    • 17 L. Blasco, L. Duracher, J. P. Forestier, L. Vian and G. MartiMestres, J. Dispersion Sci. Technol., 2006, 27, 799-810.
    • 18 M. Picardo, M. Ottaviani, E. Camera and A. Mastrofrancesco, Dermatoendocrinol, 2009, 1, 68-71.
    • 19 P. W. Wertz and B. Van Den Bergh, Chem. Phys. Lipids, 1998, 91, 85-96.
    • 20 J. W. Fluhr, J. Kao, M. Jain, S. K. Ahn, K. R. Feingold and P. M. Elias, J. Invest. Dermatol., 2001, 117, 44-51.
    • 21 M. Ho¨ltje, T. F¨orster, B. Brandt, T. Engels, W. Von Rybinski 48 P. Niemela, M. T. Hyvonen and I. Vattulainen, Biophys. J., and H. D. H¨oltje, Biochim. Biophys. Acta, Biomembr., 2001, 2004, 87, 2976-2989. 1511, 156-167. 49 D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof,
    • 22 M. E. Lane, Int. J. Pharm., 2013, 447, 12-21. A. E. Mark and H. J. C. Berendsen, J. Comput. Chem.,
    • 23 B. W. Barry, J. Controlled Release, 1987, 6, 85-97. 2005, 26, 1701-1718.
    • 24 A. C. Williams and B. W. Barry, Adv. Drug Delivery Rev., 2012, 50 M. Patra, E. Salonen, E. Terama, I. Vattulainen, R. Faller, 64, 128-137. B. W. Lee, J. Holopainen and M. Karttunen, Biophys. J., 2006,
    • 25 S. Songkro, Songklanakarin J. Sci. Technol., 2009, 31, 90, 1121-1135. 299-321. 51 D. P. Tieleman, H. J. C. Berendsen and M. S. P. Sansom,
    • 26 S. Santoyo and P. Ygartua, Eur. J. Pharm. Biopharm., 2000, Biophys. J., 1999, 76, 3186-3191. 50, 245-250. 52 D. P. Tieleman, H. J. C. Berendsen and M. S. P. Sansom,
    • 27 H. Tanojo, J. A. Bouwstra, H. E. Junginger and H. E. Bodde, Biophys. J., 1999, 76, 1757-1769. Pharm. Res., 1997, 14, 42-49. 53 D. P. Tieleman, M. S. P. Sansom and H. J. C. Berendsen,
    • 28 L. B. Lopes, C. M. Brophy, E. Furnish, C. R. Flynn, O. Sparks, Biophys. J., 1999, 76, 40-49. P. Komalavilas, L. Joshi, A. Panitch and M. V. L. B. Bentley, 54 E. Mombelli, R. Morris, W. Taylor and F. Fraternali, Biophys. Pharm. Res., 2005, 22, 750-757. J., 2003, 84, 1507-1517.
    • 29 L. B. Lopes, J. H. Collett and M. V. Bentley, Eur. J. Pharm. 55 M. Laner, B. A. C. Horta and P. H. Hu¨nenberger, J. Mol. Biopharm., 2005, 60, 25-30. Graphics Modell., 2015, 55, 48-64.
    • 30 L. B. Lopes, J. L. Lopes, D. C. Oliveira, J. A. Thomazini, 56 R. Tjo¨rnhammar and O. Edholm, J. Chem. Theory Comput., M. T. Garcia, M. C. Fantini, J. H. Collett and M. V. Bentley, 2014, 10, 5706-5715. Eur. J. Pharm. Biopharm., 2006, 63, 146-155. 57 S. W. Chiu, S. A. Pandit, H. L. Scott and E. Jakobsson, J. Phys.
    • 31 L. B. Lopes, F. F. Speretta and M. V. Bentley, Eur. J. Pharm. Chem. B, 2009, 113, 2748-2763. Sci., 2007, 32, 209-215. 58 B. Hess, J. Chem. Theory Comput., 2008, 4, 116-122.
    • 32 K. P. Ananthapadmanabhan, L. Yang, C. Vincent, L. Tsaur, 59 W. F. van Gunsteren, P. Kruger, S. R. Billeter, A. E. Mark, K. Vetro, V. Foy, S. Zhang, A. Ashkenazi, E. Pashkovski and A. A. Eising, W. R. P. Scott, P. H. Huneberg and I. G. Tironi, V. Subramanian, Cosmet. Dermatol., 2009, 22, 307-316. Biomolecular Simulation: The GROMOS96 Manual and User
    • 33 K. P. Ananthapadmanabhan, S. Mukherjee and P. Chandar, Guide., Vdf Hochschulverlag AG an der ETH Zu¨rich, Zu¨rich, Int. J. Cosmet. Sci., 2013, 35, 337-345. Switzerland, 1996.
    • 34 K. Morimoto, H. Tojima, T. Haruta, M. Suzuki and 60 W. L. Jorgensen and J. Tiradorives, J. Am. Chem. Soc., 1988, M. Kakemi, J. Pharm. Pharmacol., 1996, 48, 1133-1137. 110, 1657-1666.
    • 35 S. A. Pandit and H. L. Scott, J. Chem. Phys., 2006, 61 J. P. Ryckaert and A. Bellemans, Chem. Phys. Lett., 1975, 30, 124, 014708. 123-125.
    • 36 R. Notman, J. Anwar, W. J. Briels, M. G. Noro and W. K. Den 62 W. G. Hoover, Phys. Rev. A, 1985, 31, 1695-1697. Otter, Biophys. J., 2008, 95, 4763-4771. 63 S. Nose, Mol. Phys., 1984, 52, 255-268.
    • 37 C. Das, M. G. Noro and P. D. Olmsted, Biophys. J., 2009, 97, 64 S. Nose and M. L. Klein, Mol. Phys., 1983, 50, 1055-1076. 1941-1951. 65 M. Parrinello and A. Rahman, J. Appl. Phys., 1981, 52,
    • 38 R. Thind, D. W. O'Neill, A. Del Regno and R. Notman, Chem. 7182-7190. Commun., 2015, 51, 5406-5409. 66 T. Darden, D. York and L. Pedersen, J. Chem. Phys., 1993, 98,
    • 39 S. Guo, T. C. Moore, C. R. Iacovella, L. A. Strickland and 10089-10092. C. McCabe, J. Chem. Theory Comput., 2013, 9, 5116-5126. 67 U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee
    • 40 M. Paloncyova, R. H. DeVane, B. P. Murch, K. Berka and and L. G. Pedersen, J. Chem. Phys., 1995, 103, 8577-8593. M. Otyepka, Langmuir, 2014, 30, 13942-13948. 68 S. Miyamoto and P. A. Kollman, J. Comput. Chem., 1992, 13,
    • 41 R. Gupta and B. Rai, J. Phys. Chem. B, 2015, 119, 952-962. 11643-11655. 69 K. Larsson, Lipids - Molecular Organization, Physical Func-
    • 42 R. Notman, M. G. Noro and J. Anwar, J. Phys. Chem. B, 2007, tions and Technical Applications, The Oily Press Ltd, Dundee, 111, 12748-12755. UK, 1994.
    • 43 M. I. Hoopes, M. G. Noro, M. L. Longo and R. Faller, J. Phys. 70 M. T. Hyvo¨nen, K. O¨o¨rni, P. T. Kovanen and M. Ala-Korpela, Chem. B, 2011, 115, 3164-3171. Biophys. J., 2001, 80, 565-578.
    • 44 O. Berger, O. Edholm and F. Jahnig, Biophys. J., 1997, 72, 71 M. J. Kim, H. J. Doh, M. K. Choi, S. J. Chung, C. K. Shim, 2002-2013. D. D. Kim, J. S. Kim, C. S. Yong and H. G. Choi, Drug
    • 45 C. Das, M. G. Noro and P. D. Olmsted, Phys. Rev. Lett., 2013, Delivery, 2008, 15, 373-379. 111, 148101. 72 S. A. Ibrahim and S. K. Li, Pharm. Res., 2010, 27, 115-125.
    • 46 C. Das and P. D. Olmsted, Phil. Trans. R. Soc. A 20150126, 73 A. Naik, L. A. R. M. Pechtold, R. O. Potts and R. H. Guy, 2016, arXiv:1510.08939. J. Controlled Release, 1995, 37, 299-306.
    • 47 R. Notman and J. Anwar, Adv. Drug Delivery Rev., 2013, 65, 74 E. H. Mojumdar, R. W. Helder, G. S. Gooris and J. A. 237-250. Bouwstra, Langmuir, 2014, 30, 6534-6543.
    • 75 B. Ongpipattanakul, R. R. Burnette, R. O. Potts and 80 H. L. Brockman, M. M. Momsen, R. E. Brown, L. He, M. L. Francoeur, Pharm. Res., 1991, 8, 350-354. J. Chun, H. S. Byun and R. Bittman, Biophys. J., 2004, 87,
    • 76 S. L. Duncan and R. G. Larson, Biophys. J., 2008, 94, 1722-1731. 2965-2986. 81 M. O¨˘gu¨tcu¨, N. Arifo˘glu and E. Yilmaz, J. Am. Oil Chem. Soc.,
    • 77 J. J. Lopez Cascales, A. Garro, R. D. Porasso and R. D. Enriz, 2015, 92, 459-471. Phys. Chem. Chem. Phys., 2014, 16, 21694-21705. 82 E. Egberts, S. J. Marrink and H. J. C. Berendsen, Eur. Biophys. J.,
    • 78 I. Pascher, Biochim. Biophys. Acta, Biomembr., 1976, 455, 433-451. 1994, 22, 423-436.
    • 79 A. Holmgren, G. Lindblom and L. B. Å. Johansson, J. Phys. 83 D. P. Tieleman, D. Van Der Spoel and H. J. C. Berendsen, Chem., 1988, 92, 5639-5642. J. Phys. Chem. B, 2000, 104, 6380-6388.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article