LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bennet, E.D.; Mahony, C.M.O.; Potts, H.E.; Everest, P.; Rutherford, D.; Askari, S.; McDowell, D.A.; Mariotti, D.; Kelsey, C.; Perez-Martin, F.; Hamilton, N.; Maguire, P.; Diver, D.A. (2016)
Publisher: Elsevier BV
Journal: Journal of Aerosol Science
Languages: English
Types: Article
Subjects: Materials Science(all), Pollution, Environmental Chemistry

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
In this paper we describe a novel method for delivering a precise, known amount of electric charge to a micron-sized solid target. Aerosolised microparticles passed through a plasma discharge will acquire significant electric charge. The fluid stability under evaporative stress is a key aspect that is core to the research. Initially stable charged aerosols subject to evaporation (i.e. a continually changing radius) may encounter the Rayleigh stability limit. This limit arises from the electrostatic and surface tension forces and determines the maximum charge a stable droplet can retain, as a function of radius. We demonstrate that even if the droplet charge is initially much less than the Rayleigh limit, the stability limit will be encountered as the droplet evaporates. The instability emission mechanism is strongly linked to the final charge deposited on the target, providing a mechanism that can be used to ensure a predictable charge deposit on a known encapsulated microparticle.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Cazabat, Anne-Marie, & Guena, Geoffroy (2010). Evaporation of macroscopic sessile droplets. Soft Matter, 6(12), 2591-2612.
    • Chernyak, V. (1995). The kinetic-theory of droplet evaporation. Journal of Aerosol Science, 26(September (6)), 873-885.
    • Daly, R. T., Kerby, J. D., & Austin, D. E. (2013). Electrospray charging of minerals and ices for hypervelocity impact research. Planetary and Space Science, 75 (January), 182-187.
    • Davis, E. J., & Bridges, M. A. (1994). The Rayleigh limit of charge revisited-light-scattering from exploding droplets. Journal of Aerosol Science, 25(September (6)), 1179-1199.
    • delaMora, J. F. (1996). On the outcome of the Coulombic fission of a charged isolated drop. Journal of Colloid and Interface Science, 178(1), 209-218.
    • Doyle, A., Moffett, D. R., & Vonnegut, B. (1964). Behaviour of evaporating electrically charged droplets. Journal of Colloid Science, 19(2), 136-143.
    • Feng, X., Bogan, M. J., & Agnes, G. R. (2001). Coulomb fission event resolved progeny droplet production from isolated evaporating methanol droplets. Analytical Chemistry, 73(September (18)), 4499-4507.
    • Gomez, A., & Tang, K. Q. (1994). Charge and fission of droplets in electrostatic sprays. Physics of Fluids, 6(January (1)), 404-414.
    • Gu, W., Heil, P. E., Choi, H., & Kim, K. (2007). Comprehensive model for fine Coulomb fission of liquid droplets charged to rayleigh limit. Applied Physics Letters, 91(August (6)), 064104.
    • Hogan, C. J., Jr., Biswas, P., & Chen, D. (2009). Charged droplet dynamics in the submicrometer size range. Journal of Physical Chemistry B, 113(January (4)), 970-976.
    • Hunter, H. C., & Ray, A. K. (2009). On progeny droplets emitted during Coulombic fission of charged microdrops. Physical Chemistry, 11(29), 6156-6165.
    • Hutchinson, I. H., & Patacchini, L. (2007). Computation of the effect of neutral collisions on ion current to a floating sphere in a stationary plasma. Physics of Plasmas, 14(January (1)).
    • Khrapak, S. A., & Morfill, G. E. (2008). An interpolation formula for the ion flux to a small particle in collisional plasmas. Physics of Plasmas, 15(November (11)), 114503.
    • Khrapak, S. A., Ratynskaia, S. V., Zobnin, A. V., Usachev, A. D., Yaroshenko, V. V., Thoma, M. H., et al. (2005). Particle charge in the bulk of gas discharges. Physical Review E, 72(July (1)), 016406.
    • Khrapak, S. A., Tolias, P., Ratynskaia, S., Chaudhuri, M., Zobnin, A., Usachev, A., et al. (2012). Grain charging in an intermediately collisional plasma. Europhysics Letters, 97(February (3)).
    • Lampe, M., Gavrishchaka, V., Ganguli, G., & Joyce, G. (2001). Effect of trapped ions on shielding of a charged spherical object in a plasma. Physical Review Letters, 86(June), 5278-5281.
    • Li, K. Y., Tu, H. H., & Ray, A. K. (2005). Charge limits on droplets during evaporation. Langmuir, 21(April (9)), 3786-3794.
    • Lieberman, M.A., & Lichtenberg, A.J. (2005). Principles of plasma discharges and materials processing (pp. 1-757), 2nd Edition.
    • Lord Rayleigh, J. W. S. (1882). On the equilibrium of liquid conducting masses charged with electricity. Philosophical Magazine Series 5, 14(87), 184-186.
    • Maguire, P. D., Mahony, C. M. O., Kelsey, C. P., Bingham, A. J., Montgomery, E. P., Bennet, E. D., et al. (2015). Controlled microdroplet transport in an atmospheric pressure microplasma. Applied Physics Letters, 106(June (22)).
    • Maguire, P. D. (2016). Private communication.
    • Maze, J. T., Jones, T. C., & Jarrold, M. F. (2006). Negative droplets from positive electrospray. Journal of Physical Chemistry A, 110(November (46)), 12607-12612.
    • Patacchini, Leonardo, & Hutchinson, Ian H. (2009). Continuum-plasma solution surrounding nonemitting spherical bodies. Physics of Plasmas, 16(January (6)).
    • Santos, Leandra P., Ducati, Telma R. D., Balestrin, Lia B. S., & Galembeck, Fernando (2011). Water with excess electric charge. Journal of Physical Chemistry C, 115(June (22)), 11226-11232 JUN 9.
    • Seto, T., Maekawa, T., Osone, S., Kawamura, K., Yamauchi, T., & Otani, Y. (2013). Formation of highly charged nanodroplets by condensation-electrospray device. Chemical Engineering Science, 85(January), 46-49.
    • Shi, X., & Blandino, J. (2013). Effect of electron bombardment on size distribution of negatively charged droplets produced by electrospray. Journal of Aerosol Science, 59(May), 31-46.
    • Shrimpton, J. S. (2005). Dielectric charged drop break-up at sub-Rayleigh limit conditions. IEEE Transactions on Dielectrics and Electrical Insulation, 12 (January (3)), 573-578.
    • Smith, J. N., Flagan, R. C., & Beauchamp, J. L. (2002). Droplet evaporation and discharge dynamics in electrospray ionization. Journal of Physical Chemistry A, 106(October (42)), 9957-9967.
    • Taflin, D. C., Ward, T. L., & Davis, E. J. (1989). Electrified droplet fission and the rayleigh limit. Langmuir, 5(March (2)), 376-384.
    • Taylor, G. (1964). Disintegration of water drops in electric field. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 280 (1380), 383-397.
    • Thaokar, R. M., & Deshmukh, S. D. (2010). Rayleigh instability of charged drops and vesicles in the presence of counterions. Physics of Fluids, 22(March (3)), 034107.
    • Wang, Yunshan, Tan, Ming K., Go, David B., & Chang, Hsueh-Chia (2012). Electrospray cone-jet breakup and droplet production for electrolyte solutions. Europhysics Letters, 99(September (6)).
    • Widmann, J. F., Aardahl, C. L., & Davis, E. J. (1997). Observations of non-Rayleigh limit explosions of electrodynamically levitated microdroplets. Aerosol Science and Technology, 27(November (5)), 636-648.
    • Zardini, A. A., Riipinen, I., Koponen, I. K., Kulmala, M., & Bilde, M. (2010). Evaporation of ternary inorganic/organic aqueous droplets: Sodium chloride, succinic acid and water. Journal of Aerosol Science, 41(August (8)), 760-770.
    • Zilch, L. W., Maze, J. T., Smith, J. W., Ewing, G. E., & Jarrold, M. F. (2008). Charge separation in the aerodynamic breakup of micrometer-sized water droplets. Journal of Physical Chemistry A, 112(December (51)), 13352-13363.
    • Zobnin, A. V., Nefedov, A. P., Sinel'Shchikov, V. A., & Fortov, V. E. (2000). On the charge of dust particles in a low-pressure gas discharge plasma. Soviet Journal of Experimental and Theoretical Physics, 91(September), 483-487.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • RCUK | Microplasma-assisted manip...
  • RCUK | Microplasma-assisted manip...

Cite this article