Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wu, Jiande; Du, Jin; Lin, Zhengyu; Hu, Yihua; Zhao, Chongwen; He, Xiangning (2015)
Languages: English
Types: Article
For the development of communication systems such as Internet of Things, integrating communication with power supplies is an attractive solution to reduce supply cost. This paper presents a novel method of power/signal dual modulation (PSDM), by which signal transmission is integrated with power conversion. This method takes advantage of the intrinsic ripple initiated in switch mode power supplies as signal carriers, by which cost-effective communications can be realized. The principles of PSDM are discussed, and two basic dual modulation methods (specifically PWM/FSK and PWM/PSK) are concluded. The key points of designing a PWM/FSK system, including topology selection, carrier shape, and carrier frequency, are discussed to provide theoretical guidelines. A practical signal modulation-demodulation method is given, and a prototype system provides experimental results to verify the effectiveness of the proposed solution.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. Iera, C. Floerkemeier, J. Mitsugi, and G. Morabito, “The Internet of things [Guest Editorial],” IEEE Wirel. Commun., vol.17, no.6, pp.8-9, Dec. 2010.
    • [2] E. I. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Goldsmith, and R. Rednic, “Edge mining the Internet of things,” IEEE Sens. J., vol.13, no.10, pp.3816-3825, Oct.2013.
    • [3] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “ Interacting with the SOA-based Internet of things: discovery, query, selection, and on-demand provisioning of web services,” IEEE Trans. Services Comput., vol.3, no.3, pp.223-235, Jul.-Sept. 2010.
    • [4] Q. Wang, S. Gopalakrishnan, “Adapting a main-stream Internet switch architecture for multihop real-time industrial networks,” IEEE Trans. Ind. Inf., vol.6, no.3, pp.393-404, Aug.2010.
    • [5] A.C.Weaver, M.W. Condry, “Distributing Internet services to the network's edge,” IEEE Trans. Ind. Electron., vol.50, no.3, pp.404-411, June 2003.
    • [6] C. W. Thompson, “Smart devices and soft controllers,” IEEE Internet Computing, vol.9, no.1, pp.82-85, Jan.-Feb.2005.
    • [7] J. M. Guerrero, Lijun Hang, and J. Uceda, “Control of distributed uninterruptible power supply systems,” IEEE Trans. Ind. Electron.,vol.55, no.8, pp.2845-2859, Aug.2008.
    • [8] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut,C. Buccella, C. Cecati, and G. P. Hancke, “A survey on smart grid potential applications and communication requirements,” IEEE Trans. Ind. Inf., vol.9, no.1,pp.28- 42, Feb.2013.
    • [9] S. K. Mazumder, M. Tahir, and K. Acharya, “Master-slave current-sharing control of a parallel DC-DC converter system over an RF communication interface,” IEEE Trans. Ind. Electron., vol.55, no.1, pp.59-66, Jan. 2008.
    • [10] E. J. Bueno, A. Hernández, F. J. Rodríguez, C. Girón, R. Mateos, and S. Cóbreces, “A DSP and FPGA-based industrial control with high-speed communication interfaces for grid converters applied to distributed power generation systems,” IEEE Trans. Ind. Electron., vol.56, no.3, pp.654- 669, Mar.2009.
    • [11] T. Sauter, “The three generation of field-level networks-evolution and compatibility issues,” IEEE Trans. Ind. Electron., vol.57, no.11, pp.3585- 3595, Nov. 2010.
    • [12] B. Groza, and S. Murvay, “Efficient protocols for secure broadcast in controller area networks,” IEEE Trans. Ind. Inf., vol.9, no.4, pp.2034- 2042, Nov. 2013.
    • [13] A. Flammini, D. Marioli, E. Sisinni and A. Taroni, “Design and implementation of wireless fieldbus for plastic machineries,” IEEE Trans. Ind. Electron., vol.56, no.3, pp.747-755, Mar.2009.
    • [14] M., Sechilariu, B. Wang, F. Locment, “Building integrated photovoltaic system with energy storage and smart grid communication,” IEEE Trans. Ind. Electron.,vol. 60, no. 4,pp. 1607-1618, Apr. 2013
    • [15] Y. Ishii, “Exploiting backbone routing redundancy in industrial wireless system,” IEEE Trans. Ind. Electron., vol.56, no.10,pp.4288-4295, Oct.2009.
    • [16] E. M. Shakshuki, N. Kang, and T. R. Sheltami, “EAACK-A secure instruction-detection system for MANETs,” IEEE Trans. Ind. Electron.,vol.60, no.3,pp.1089-1098, Mar.2013.
    • [17] C. Alcaraz and J. Lopez, “A security analysis for wireless sensor mesh network in highly critical system,” IEEE Trans. Syst., Man, Cybern.C: Appl. Rev.,,vol.40, no.3,pp.419-428, Jul.2010.
    • [18] J.J. Fahie, “Edward Davy,” The Electrician, pp. 181-227, July, 1883.
    • [19] T. A. Papadopoulos, C. G. Kaloudas, A. I. Chrysochos, and G. K. Papagiannis, “Application of narrowband power-line communication in medium-voltage smart distribution grids,” IEEE Trans. Power. Del.,vol.28, no.2,pp.981-988, Apr.2013.
    • [20] H. Meng, S. Chen, Y. L. Guan, C. L. Law,P. L. So, E. Gunawan, and T. T. Lie, “A transmission line model for high-frequency power line communication channel,” in Proc. 5th Int. Conf. Power Syst. Technol., Kunming, China, Oct. 2002, vol. 2, pp. 1290-1295.
    • [21] M. A. Mannah, N. Ginot, and C. Batard, “Effect of the power cable on data transmission over a pulsewidth-modulated network,” IEEE Trans. Ind. Electron.,vol.61, no.8,pp.4238-4245, Aug, 2014.
    • [22] N. Pavlidou, A. J. Han Vinck,J. Yazdani, and B. Honary, “Power line communications: state of the art and future trends,” IEEE Commun. Mag., vol.41, no.4, pp34-40, Apr. 2003.
    • [23] V., K. Kilani, L. Koné, M. Liénard, and P. Degauque, “Feasibility of a high-bit-rate power-line communication between an inverter and a motor,” IEEE Trans. Ind. Electron.,vol.61, no.9, pp4816-4823, Sep., 2014.
    • [24] T. Sauter and M. Lobashov, “End-to-End Communication Architecture for Smart Grids,” IEEE Trans. Ind. Electron.,vol.58, no.4, pp1218-1228, Apr. 2011.
    • [25] J. Liu, B. Zhao, J. Wang,Y. Zhu, and J. Hu, “Application of power line communication in smart power Consumption,” in Proc. IEEE ISPLC, Mar. 2010, pp.303-307.
    • [26] H. Kubota, K. Suzuki, I. Kawakami,M. Sakugawa, and H. Kondo, “High frequency band dispersed-tone power line communication modem for networked appliances,” IEEE Trans. Consum. Electron., vol.52, no.1, pp. 44-50, Feb. 2006.
    • [27] C. Lin, H. Chu, S. Yeh,M. Lu, J. Yao, and H. Chen, “Robust video streaming over power lines,” in Proc. Int. Symp. Power Line Commun. Appl., Orlando, FL, 2006, pp196-201.
    • [28] W. Stefanutti, P. Mattavelli, S. Saggini, andL. Panseri, “Communication on power lines using frequency and duty-cycle modulation in digitally controlled DC-DC converters,” in Proc. IEEE IECON, Paris, France, 2006, pp.2144-2149.
    • [29] W. Stefanutti, S. Saggini, P. Mattavelli and M. Ghioni, “Power line communication in digitally controlled DC-DC converters using switching frequency modulation,” IEEE Trans. Ind. Electron., vol.55, no.4, pp.1509-1518, Apr. 2008.
    • [30] C.D.Xu andK.W.E.Cheng, “A survey of distributed power system - AC versus DC distributed power system,” in Proc. Conf. Power Electron. Syst Appl.,Hong Kong, 2011,pp.1-12.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article