LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
da Cunha, Rudnei Dias; Hopkins, Tim (1996)
Publisher: UKC
Languages: English
Types: Book
Subjects: QA76
<< This reports is an updated version of 2-94 >> We describe PIM (Parallel Iterative Methods), a collection of Fortran 77 routines to solve systems of linear equations on parallel computers using iterative methods. A number of iterative methods for symmetric and nonsymmetric systems are available, including * Conjugate-Gradients (CG), * Bi-Conjugate-Gradients (Bi-CG), * Conjugate-Gradients squared (CGS), * the stabilised version of Bi-Conjugate-Gradients (Bi-CGSTAB), * the restarted stabilised version of Bi-Conjugate-Gradients (RBi-CGSTAB), * generalised minimal residual (GMRES), * generalised conjugate residual (GCR), * normal equation solvers (CGNR and CGNE), * quasi-minimal residual (QMR) with coupled two-term recurrences, * transpose-free quasi-minimal residual (TFQMR) and * Chebyshev acceleration. The PIM routines can be used with user-supplied preconditioners, and left-, right- or symmetric-preconditioning are supported. Several stopping criteria can be chosen by the user. In this user's guide we present a brief overview of the iterative methods and algorithms available. The use of PIM is introduced via examples. We also present some results obtained with PIM concerning the selection of stopping criteria and parallel scalability. A reference manual can be found at the end of this report with specific details of the routines and parameters.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article