Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cooke, Julia; DeGabriel, Jane L.; Hartley, Susan E (2016)
Languages: English
Types: Article
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alfredsson, H., Clymans, W., Stadmark, J., Conley, D. & Rousk, J. (2016) Bacterial and fungal colonization and decomposition of submerged plant litter: consequences for biogenic silica dissolution. FEMS Microbiology Ecology, 92, fiw011.
    • Bartoli, F. (1983) The biogeochemical cycle of silicon in two temperate forest ecosystems. Ecological Bulletins, 35, 469-476.
    • Bityutskii, N., Kaidun, P. & Yakkonen, K. (2016) Soil Biology & Biochemistry Earthworms can increase mobility and bioavailability of silicon in soil. Soil Biology and Biochemistry, 99, e195-e199.
    • Calandra, I., Zub, K., Szafranska, P.A., Zalewski, A. & Merceron, G. (2016) Silicon-based plant defences, tooth wear and voles. The Journal of Experimental Biology, 219, 501-507.
    • Carey, J.C. & Fulweiler, R.W. (2014) Silica uptake by Spartina - evidence of multiple modes of accumulation from salt marshes around the world. Frontiers in Plant Science, 5, 1-11.
    • Carey, J.C. & Fulweiler, R.W. (2015) Human appropriation of biogenic silicon - the increasing role of agriculture. Functional Ecology, 30, 1331- 1339.
    • Clymans, W., Struyf, E., Govers, G., Vandevenne, F. & Conley, D.J. (2011) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences, 8, 2281-2293.
    • Conley, D.J. (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles, 16, 1-8.
    • Conley, D.J. & Carey, J.C. (2015) Biogeochemistry: Silica cycling over geologic time. Nature Geoscience, 8, 431-432.
    • Conley, D.J., Likens, G.E., Buso, D.C., Saccone, L., Bailey, S.W. & Johnson, C.E. (2008) Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest. Global Change Biology, 14, 2548-2554.
    • Cooke, J. & Leishman, M.R. (2011a) Is plant ecology more siliceous than we realise? Trends in Plant Science, 16, 61-68.
    • Cooke, J. & Leishman, M.R. (2011b) Silicon concentration and leaf longevity: is silicon a player in the leaf dry mass spectrum? Functional Ecology, 25, 1181-1188.
    • Cooke, J. & Leishman, M.R. (2012) Tradeoffs between foliar silicon and carbon-based defences: evidence from vegetation communities of contrasting soil types. Oikos, 121, 2052-2060.
    • Cooke, J. & Leishman, M.R. (2016) Consistent alleviation of abiotic stress with silicon addition: a meta-analysis. Functional Ecology, 30, 1340- 1357.
    • Cornelis, J. & Delvaux, B. (2016) Soil processes drive the biological silicon feedback loop. Functional Ecology, 30, 1298-1310.
    • Cornelis, J., Ranger, J., Iserentant, A. & Delvaux, B. (2009) Tree species impact the terrestrial cycle of silicon through various uptakes. Biogeochemistry, 97, 231-245.
    • Dakora, F.D. & Nelwamondo, A. (2003) Silicon nutrition promotes root growth and tissue mechanical strength in symbiotic cowpea. Functional Plant Biology, 30, 947.
    • Deshmukh, R. & Belanger, R.R. (2016) Molecular evolution of aquaporins and silicon influx in plants. Functional Ecology, 30, 1277-1285.
    • Epstein, E. (1994) The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America, 91, 11-17.
    • Epstein, E. (1999) Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 641-664.
    • Fauteux, F., Remus-Borel, W., Menzies, J.G., Belanger, R., Remus-Borel, W., Menzies, J.G. et al. (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters, 249, 1-6.
    • Frings, P.J., Clymans, W., Fontorbe, G., De La Rocha, C.L. & Conley, D.J. (2016) The continental Si cycle and its impact on the ocean Si isotope budget. Chemical Geology, 425, 12-36.
    • Fulweiler, R.W., Maguire, T.J., Carey, J.C. & Finzi, A.C. (2015) Does elevated CO2 alter silica uptake in trees? Frontiers in Plant Science, 5, 1-7.
    • Gocke, M., Liang, W., Sommer, M. & Kuzyakov, Y. (2013) Silicon uptake by wheat: effects of Si pools and pH. Journal of Soil Science and Plant Nutrition, 176, 551-560.
    • Guntzer, F., Keller, C. & Meunier, J.D. (2012) Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32, 201-213.
    • Hartley, S.E. (2015) Round and round in cycles? Silicon-based plant defences and vole population dynamics. Functional Ecology, 29, 151-153.
    • Hartley, S.E. & DeGabriel, J. (2016) The ecology of herbivore-induced silicon defences in grasses. Functional Ecology, 30, 1311-1322.
    • Hartley, S.E., Fitt, R.N., McLarnon, E.L. & Wade, R.N. (2015) Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply. Frontiers in Plant Science, 6, 1-8.
    • Hodson, M.J., White, P.J., Mead, A. & Broadley, M.R. (2005) Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96, 1027-1046.
    • Huitu, O., Forbes, K., Helander, M., Julkunin-Tiitto, R., Lambin, X., Saikkonen, K. et al. (2014) Silicon, endophytes and secondary metabolites as grass defenses against mammalian herbivores. Frontiers in Plant Science, 5, 1-10.
    • Iler, R.K. (1979) Silica in Biology. Wiley and Sons, Chichester, UK.
    • Johnson, S.N., Erb, M. & Hartley, S.E. (2016) Roots under attack: contrasting plant responses to below- and above-ground insect herbivory. New Phytologist, 210, 413-418.
    • Keeping, M.G. & Reynolds, O.L. (2009) Silicon in agriculture: new insights, new significance and growing application. Annals of Applied Biology, 155, 153-154.
    • Kothari, S., Marschner, H. & Romheld, V. (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytologist, 116, 637-645.
    • Li, Z., Song, Z. & Cornelis, J. (2014) Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon. Frontiers in Plant Science, 5, 1-8.
    • Li, T., Hu, Y., Hao, Z., Li, H., Wang, Y., Chen, B. et al. (2013) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 197, 617-630.
    • Ma, J.F., Miyake, Y. & Takahashi, E. (2001) Silicon as a beneficial element for crop plants. Silicon in Agriculture (eds L.E. Datnoff, G.H. Snyder & G.H. Korndorfer), pp. 17-39. Elsevier, London, UK.
    • Ma, J.F. & Yamaji, N. (2015) A cooperative system of silicon transport in plants. Trends in Plant Science, 20, 435-442.
    • Ma, J.F., Mitani, N., Nagao, S. & Konishi, S. (2004) Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiology, 136, 3284-3289.
    • Ma, J.F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M. et al. (2006) A silicon transporter in rice. Nature, 440, 688-691.
    • Ma, J.F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T. et al. (2007) An efflux transporter of silicon in rice. Nature, 448, 209- 212.
    • Massey, F.P., Ennos, A.R. & Hartley, S.E. (2006) Silica in grasses as a defence against insect herbivores: contrasting effects on folivores and a phloem feeder. Journal of Animal Ecology, 75, 595-603.
    • Massey, F.P., Ennos, A.R. & Hartley, S.E. (2007a) Grasses and the resource availability hypothesis: the importance of silica-based defences. Journal of Ecology, 95, 414-424.
    • Massey, F.P., Ennos, A.R. & Hartley, S.E. (2007b) Herbivore specific induction of silica-based plant defences. Oecologia, 152, 677-683.
    • Massey, F.P. & Hartley, S.E. (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proceedings of the Royal Society B: Biological Sciences, 273, 2299-2304.
    • Massey, F.P. & Hartley, S.E. (2009) Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. Journal of Animal Ecology, 78, 281-291.
    • Massey, F.P., Massey, K., Ennos, A.R. & Hartley, S.E. (2009) Impacts of silica-based defences in grasses on the feeding preferences of sheep. Basic and Applied Ecology, 10, 622-630.
    • McColloch, J.W. & Salmon, S.C. (1923) The resistance of wheat to the Hessian fly-a progress report. Journal of Economic Entomology, 16, 293-298.
    • McNaughton, S.J. (1985) Ecology of a grazing ecosystem: the Serengeti. Ecological Monographs, 55, 259-294.
    • McNaughton, S., Tarrants, J., McNaughton, M. & Davis, R. (1985) Silica as a defense against herbivory and a growth promotor in African grasses. Ecology, 66, 528-535.
    • Parry, D., Hodson, M.J., Sangster, A.G., Jones, W. & O'Neill, C. (1984) Some recent advances in studies of silicon in higher plants [and Discussion]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 304, 537-549.
    • Piperno, D.R. (2006) Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Rowman and Littlefield, New York, NY, USA.
    • Querne, J., Ragueneau, O. & Poupart, N. (2012) In situ biogenic silica variations in the invasive salt marsh plant, Spartina alterniflora: a possible link with environmental stress. Plant and Soil, 352, 157-171.
    • Quigley, K.M. & Anderson, T.M. (2014) Leaf silica concentration in Serengeti grasses increases with watering but not clipping: insights from a common garden study and literature review. Frontiers in Plant Science, 5, 1-10.
    • Raven, J. (1983) The transport and function of silicon in plants. Biological Reviews, 58, 179-207.
    • Reidinger, S., Ramsey, M.H. & Hartley, S.E. (2012) Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer. New Phytologist, 195, 699-706.
    • Reynolds, J.J.H., Lambin, X., Massey, F.P., Reidinger, S., Sherratt, J.A., Smith, M.J. et al. (2012) Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics. Oecologia, 170, 445-456.
    • Reynolds, O.L., Padula, M.P., Zeng, R. & Gurr, G.M. (2016) Silicon: Potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Frontiers in Plant Science, 7, 1-13.
    • Sangster, A.G. (1978) Silicon in the roots of higher plants. American Journal of Botany, 65, 929-935.
    • Sangster, A.G. & Hodson, M.J. (1986) Silica in higher plants. Silicon Biochemistry Ciba Foundation Symposium 121 (eds D. Evered & M. O'Connor), pp. 90-111. John Wiley & Sons, Chichester, UK.
    • Schaller, J., Brackhage, C. & Dudel, E.G. (2012) Silicon availability changes structural carbon ratio and phenol content of grasses. Environmental and Experimental Botany, 77, 283-287.
    • Schoelynck, J. & Struyf, E. (2015) Silicon in aquatic vegetation. Functional Ecology, 30, 1323-1330.
    • Smis, A., Murguzur, F.J.A., Struyf, E., Soininen, E.M., Jusdado, J.G.H., Meire, P. et al. (2014) Determination of plant silicon content with near infrared reflectance spectroscopy. Frontiers in Plant Science, 5, 1-9.
    • Soininen, E.M., Brathen, K.A., Jusdado, J.G.H., Reidinger, S. & Hartley, S.E. (2013) More than herbivory: levels of silica-based defences in grasses vary with plant species, genotype and location. Oikos, 122, 30-41.
    • Stromberg, C., Di Stillo, V. & Zhaoliang, S. (2016) Functions of phytoliths in vascular plants: an evolutionary perspective. Functional Ecology, 30, 1286-1297.
    • Struyf, E. & Conley, D.J. (2008) Silica: an essential nutrient in wetland biogeochemistry. Frontiers in Ecology and the Environment, 7, 88-94.
    • Struyf, E., Smis, A., Van Damme, S., Meire, P. & Conley, D.J. (2009) The global biogeochemical silicon cycle. Silicon, 1, 207-213.
    • Takahashi, E., Ma, J.F. & Miyake, Y. (1990) The possibility of silicon as an essential element for higher plants. Comments on Agricultural and Food Chemistry, 2, 99-122.
    • Trembath-Reichert, E., Wilson, J.P., McGlynn, S.E. & Fischer, W.W. (2015) Four hundred million years of silica biomineralization in land plants. Proceedings of the National Academy of Sciences of the United States of America, 112, 5449-5454.
    • Uehlein, N., Fileschi, K., Eckert, M., Bienert, G.P., Bertl, A. & Kaldenhoff, R. (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry, 68, 122-129.
    • VanBockhaven, J., De Vleesschauwer, D. & Ho€fte, M. (2013) Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. Journal of Experimental Botany, 64, 1281-1293.
    • Vicari, M. & Bazely, D.R. (1993) Do grasses fight back? The case for antiherbivore defences. Trends in Ecology & Evolution, 8, 137-141.
    • Wieczorek, M., Zub, K., Szafranska, P.A., Ksiazek, A. & Konarzewski, M. (2015) Plant-herbivore interactions: silicon concentration in tussock sedges and population dynamics of root voles. Functional Ecology, 29, 187-194.
  • No related research data.
  • No similar publications.

Share - Bookmark

Published in

Cite this article