Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Onofre, A.; Castro, Nuno Filipe Silva Fernandes; ATLAS Collaboration (2016)
Publisher: Springer Verlag
Languages: English
Types: Article
Subjects: Regular Article - Experimental Physics, Subatomic Physics, /dk/atira/pure/researchoutput/pubmedpublicationtype/D016428, Subatomär fysik, LHC, Engineering (miscellaneous), 530, QC, ATLAS detector, Photons, 510 Mathematics, Física, Science & Technology, Journal Article, Engineering (miscellaneous); Physics and Astronomy (miscellaneous), supersymmetry; final state; two photons; pp collisions; LHC; ATLAS detector, 530 Physics, Physics and Astronomy (miscellaneous)
ddc: ddc:500.2
A search has been made for supersymmetry in a final state containing two photons and missing transverse momentum using the ATLAS detector at the Large Hadron Collider. The search makes use of 3.2 fb−1 of proton-proton collision data collected at a centre-of-mass energy of 13 TeV in 2015. Using a combination of data-driven and Monte-Carlo-based approaches, the Standard Model background is estimated to be 0.27+0.22−0.10 events. No events are observed in the signal region; considering the expected background and its uncertainty, this observation implies a model-independent 95 % CL upper limit of 0.93 fb (3.0 events) on the visible cross section due to physics beyond the Standard Model. In the context of a generalized model of gauge-mediated supersymmetry breaking with a bino-like next-to-lightest supersymmetric particle, this leads to a lower limit of 1650 GeV on the mass of a degenerate octet of gluino states, independent of the mass of the lighter bino-like neutralino.

ATLAS Collaboration, for complete list of authors see http://dx.doi.org/10.1140/epjc/s10052-016-4344-x

Funding: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, UK. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [59].

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. C. Cheung, A.L. Fitzpatrick, D. Shih (Extra)ordinary gauge mediation, JHEP 07, 054 (2008). doi:10.1088/1126-6708/2008/07/054. arXiv:0710.3585 [hep-ph]
    • 2. P. Meade, N. Seiberg, D. Shih, General gauge mediation. Prog. Theor. Phys. Suppl. 177, 143-158 (2009). doi:10.1143/PTPS.177. 143. arXiv:0801.3278 [hep-ph]
    • 3. ATLAS Collaboration, Search for photonic signatures of gaugemediated supersymmetry in 8 TeV pp collisions with the ATLAS detector. Phys. Rev. D 92, 072001 (2015). doi:10.1103/PhysRevD. 92.072001. arXiv:1507.05493 [hep-ex]
    • 4. CMS Collaboration, Search for supersymmetry with photons in pp collisions at √s = 8 TeV. Phys. Rev. D 92, 072006 (2015). doi:10. 1103/PhysRevD.92.072006. arXiv:1507.02898 [hep-ex]
    • 5. Y.A. Golfand, E.P. Likhtman, Extension of the algebra of poincare group generators and violation of p invariance. JETP Lett. 13, 323- 326 (1971)
    • 6. D.V. Volkov, V.P. Akulov, Is the Neutrino a Goldstone Particle? Phys. Lett. B 46, 109-110 (1973). doi:10.1016/ 0370-2693(73)90490-5
    • 7. J. Wess, B. Zumino, Supergauge Transformations in FourDimensions. Nucl. Phys. B 70, 39-50 (1974). doi:10.1016/ 0550-3213(74)90355-1
    • 8. J. Wess, B. Zumino, Supergauge Invariant Extension of Quantum Electrodynamics. Nucl. Phys. B 78, 1 (1974). doi:10.1016/ 0550-3213(74)90112-6
    • 9. S. Ferrara, B. Zumino, Supergauge Invariant Yang-Mills Theories. Nucl. Phys. B 79, 413 (1974). doi:10.1016/0550-3213(74)90559-8
    • 10. A. Salam, J.A. Strathdee, Supersymmetry and nonabelian gauges. Phys. Lett. B 51, 353-355 (1974). doi:10.1016/ 0370-2693(74)90226-3
    • 11. G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B 76, 575 (1978). doi:10.1016/0370-2693(78)90858-4
    • 12. M. Dine, W. Fischler, A phenomenological model of particle physics based on supersymmetry. Phys. Lett. B 110, 227 (1982). doi:10.1016/0370-2693(82)91241-2
    • 13. L. Alvarez-Gaume, M. Claudson, M. Wise, Low-energy supersymmetry. Nucl. Phys. B 207, 96 (1982). doi:10.1016/ 0550-3213(82)90138-9
    • 14. C.R. Nappi, B.A. Ovrut, Supersymmetric Extension of the SU(3) x SU(2) x U(1) Model. Phys. Lett. B 113, 175 (1982). doi:10.1016/ 0370-2693(82)90418-X
    • 15. A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426-455 (2007). doi:10.1016/j.cpc. 2006.11.009. arXiv:hep-ph/0211331 [hep-ph]
    • 16. M. Mühlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM. Comput. Phys. Commun. 168, 46-70 (2005). doi:10.1016/j.cpc. 2005.01.012. arXiv:hep-ph/0311167 [hep-ph]
    • 17. A. Djouadi, M. Mühlleitner, M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaYHdecay-InTerface). Acta Phys. Polon. B 38, 635 (2007). arXiv:hep-ph/0609292 [hep-ph]
    • 18. M. Bahr et al., Herwig++ Physics and Manual. Eur. Phys. J. C 58, 639-707 (2008). doi:10.1140/epjc/s10052-008-0798-9. arXiv:0803.0883 [hep-ph]
    • 19. J. Pumplin et al., New Generation of Parton Distributions with Uncertainties from Global QCD Analysis. JHEP 07, 012 (2002). doi:10.1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195v3
    • 20. W. Beenakker et al., Squark and gluino production at hadron colliders. Nucl. Phys. B 492, 51-103 (1997). doi:10.1016/ S0550-3213(97)00084-9. arXiv:hep-ph/9610490 [hep-ph]
    • 21. A. Kulesza, L. Motyka, Threshold resummation for squarkantisquark and gluino- pair production at the LHC. Phys. Rev. Lett. 102, 111802 (2009). doi:10.1103/PhysRevLett.102.111802. arXiv:0807.2405 [hep-ph]
    • 22. A. Kulesza, L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC. Phys. Rev. D 80, 095004 (2009). doi:10.1103/PhysRevD.80.095004. arXiv:0905.4749 [hep-ph]
    • 23. W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction. JHEP 12, 041 (2009). doi:10.1088/1126-6708/ 2009/12/041. arXiv:0909.4418 [hep-ph]
    • 24. W. Beenakker et al., Squark and gluino hadroproduction. Int. J. Mod. Phys. A 26, 2637-2664 (2011). doi:10.1142/ S0217751X11053560. arXiv:1105.1110 [hep-ph]
    • 25. M. Botje et al., The PDF4LHC Working Group Interim Recommendations (2011). arXiv:1101.0538 [hep-ph]
    • 26. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02, 007 (2009). doi:10.1088/1126-6708/2009/02/007. arXiv:0811.4622 [hep-ph]
    • 27. H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). doi:10.1103/PhysRevD.82.074024. arXiv:1007.2241 [hep-ph]
    • 28. S. Schumann, F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation. JHEP 03, 038 (2008). doi:10. 1088/1126-6708/2008/03/038. arXiv:0709.1027 [hep-ph]
    • 29. S. Hoeche et al., QCD matrix elements and truncated showers. JHEP 05, 053 (2009). doi:10.1088/1126-6708/2009/05/053. arXiv:0903.1219 [hep-ph]
    • 30. J. Alwall et al., The automated computation of tree-level and nextto-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). doi:10.1007/ JHEP07(2014)079. arXiv:1405.0301 [hep-ph]
    • 31. T. Sjöstrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852-867 (2008). doi:10.1016/j.cpc.2008.01.036. arXiv:0710.3820 [hep-ph]
    • 32. R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244-289 (2013). doi:10.1016/j.nuclphysb.2012.10.003. arXiv:1207.1303 [hep-ph]
    • 33. R.D. Ball et al., Partondistributions with QED corrections. Nucl. Phys. B 877, 290-320 (2013). doi:10.1016/j.nuclphysb.2013.10. 010. arXiv:1308.0598 [hep-ph]
    • 34. ATLAS Collaboration, 'ATLAS Run 1 Pythia8 tunes' , tech. rep. ATL-PHYS-PUB-2014-021, CERN (2014). http://cds.cern. ch/record/1966419
    • 35. ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823-874 (2010). doi:10.1140/epjc/ s10052-010-1429-9. arXiv:1005.4568 [physics.ins-det]
    • 36. S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Meth. A 506, 250-303 (2003). doi:10.1016/ S0168-9002(03)01368-8
    • 37. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3, S08003 (2008). doi:10.1088/ 1748-0221/3/08/S08003
    • 38. ATLAS Collaboration, 2015 start-up trigger menu and initial performance assessment of the ATLAS trigger using Run-2 data, ATLDAQ-PUB-2016-001 (2016). http://cds.cern.ch/record/2136007
    • 39. ATLAS Collaboration, Improved electron reconstruction in ATLAS using the Gaussian Sum Filter-based model for bremsstrahlung, ATLAS-CONF-2012-047 (2012). http://cdsweb. cern.ch/record/1449796
    • 40. ATLAS Collaboration, Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data. Eur. Phys. J. C 74, 2941 (2014). doi:10.1140/epjc/s10052-014-2941-0. arXiv:1404.2240 [hep-ex]
    • 41. ATLAS Collaboration, Electron identification measurements in ATLAS using √s = 13 TeV data with 50 ns bunch spacing, ATL-PHYS-PUB-2015-041 (2015). http://cdsweb.cern.ch/record/ 2048202
    • 42. ATLAS Collaboration, Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data (2016). arXiv:1606.01813 [hep-ex]
    • 43. ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data at √s = 13 TeV. Eur. Phys. J. C 76, 292 (2016). doi:10.1140/epjc/ s10052-016-4120-y. arXiv:1603.05598 [hep-ex]
    • 44. ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1 (2016). arXiv:1512.06092 [hep-ex]
    • 45. M. Cacciari, G. Salam, G. Soyez, The anti-kt jet clustering algorithm. JHEP 04, 063 (2008). doi:10.1088/1126-6708/2008/04/063. arXiv:0802.1189 [hep-ph]
    • 46. ATLAS Collaboration, Jet calibration and systematic uncertainties for jets reconstructed in the ATLAS Detector at √s = 13 T eV , ATL-PHYS-PUB-2015-015 (2015). https://cds.cern.ch/ record/2037613
    • 47. ATLAS Collaboration, Monte Carlo calibration and combination of in-situ measurements of jet energy scale, jet energy resolution and jet mass in ATLAS, ATLAS-CONF-2015-037 (2015). http:// cdsweb.cern.ch/record/2044941
    • 48. ATLAS Collaboration, Tagging and suppression of pileup jets with the ATLAS detector, ATLAS-CONF-2014-018 (2014). http:// cdsweb.cern.ch/record/1700870
    • 49. ATLAS Collaboration, Performance of missing transverse momentum reconstruction in ATLAS studied in Proton-Proton Collisions recorded in 2012 at √s = 8 T eV , ATLAS-CONF-2013-082 (2013). http://cdsweb.cern.ch/record/1570993
    • 50. ATLAS Collaboration, Jet energy measurement with the ATLAS detector in proton-proton collisions at √s = 7 TeV. Eur. Phys. J. C 73, 2304 (2013). doi:10.1140/epjc/s10052-013-2304-2. arXiv:1112.6426 [hep-ex]
    • 51. ATLAS Collaboration, Selection of jets produced in 13 TeV proton-proton collisions with the ATLAS detector, ATLASCONF-2015-029 (2015). http://cdsweb.cern.ch/record/2037702
    • 52. G. Bozzi et al., W γ γ production with leptonic decays at NLO QCD. Phys. Rev. D 83, 114035 (2011). doi:10.1103/PhysRevD. 83.114035. arXiv:1103.4613 [hep-ph]
    • 53. ATLAS Collaboration, Measurements of Z γ and Z γ γ production in pp collisions at √s = 8 TeV with the ATLAS detector. Phys. Rev. D 93, 112002 (2016). doi:10.1103/PhysRevD.93. 112002. arXiv:1604.05232 [hep-ex]
    • 54. ATLAS Collaboration, Performance of the ATLAS Electron and Photon Trigger in pp Collisions at √s = 7 T eV in 2011 ATLASCONF-2012-048 (2012). http://cdsweb.cern.ch/record/1450089
    • 55. ATLAS Collaboration, Improved luminosity determination in pp collisions at sqrt(s) = 7 TeV using the ATLAS detector at the LHC. Eur. Phys. J. C 73, 2518 (2013). doi:10.1140/epjc/ s10052-013-2518-3. arXiv:1302.4393 [hep-ex]
    • 56. ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur. Phys. J. C 74, 3071 (2014). doi:10.1140/epjc/s10052-014-3071-4. arXiv:1407.5063 [hep-ex]
    • 57. A.L. Read, Presentation of search results: The C Ls technique. J. Phys. G 28, 2693 (2002). doi:10.1088/0954-3899/28/10/313
    • 58. ATLAS Collaboration, Search for Diphoton Events with Large Missing Transverse Energy with 36 pb−1 of 7 T eV Proton-Proton Collision Data with the ATLAS Detector. Eur. Phys. J. C 71, 1744 (2011). doi:10.1140/epjc/s10052-011-1744-9. arXiv:1107.0561 [hep-ex]
    • 59. ATLAS Collaboration, ATLAS Computing Acknowledgements 2016-2017 ATL-GEN-PUB-2016-002 (2016). http://cds.cern.ch/ record/2202407
    • 24 Department of Physics, Boston University, Boston, MA, USA
    • 25 Department of Physics, Brandeis University, Waltham, MA, USA
    • 26 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b)Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d)Instituto de Fisica, Universidade de Sao Paulo, São Paulo, Brazil
    • 27 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
    • 28 (a)Transilvania University of Brasov, Brasov, Romania; (b)National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (c)Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (d)University Politehnica Bucharest, Bucharest, Romania; (e)West University in Timisoara, Timisoara, Romania
    • 29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
    • 30 Cavendish Laboratory, University of Cambridge, Cambridge, UK
    • 31 Department of Physics, Carleton University, Ottawa, ON, Canada
    • 32 CERN, Geneva, Switzerland
    • 33 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
    • 34 (a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile
    • 35 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b)Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; (c)Department of Physics, Nanjing University, Nanjing, Jiangsu, China; (d)School of Physics, Shandong University, Jinan, Shandong, China; (e)Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai Jiao Tong University (also affiliated with PKU-CHEP), Shanghai, China; (f)Physics Department, Tsinghua University, Beijing 100084, China
    • 36 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
    • 37 Nevis Laboratory, Columbia University, Irvington, NY, USA
    • 38 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
    • 39 (a)INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b)Dipartimento di Fisica, Università della Calabria, Rende, Italy
    • 40 (a)Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; (b)Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
    • 41 Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
    • 42 Physics Department, Southern Methodist University, Dallas, TX, USA
    • 43 Physics Department, University of Texas at Dallas, Richardson, TX, USA
    • 44 DESY, Hamburg and Zeuthen, Hamburg, Germany
    • 45 Lehrstuh für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
    • 46 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
    • 47 Department of Physics, Duke University, Durham, NC, USA
    • 48 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
    • 49 INFN Laboratori Nazionali di Frascati, Frascati, Italy
    • 50 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
    • 51 Section de Physique, Université de Genève, Geneva, Switzerland
    • 52 (a)INFN Sezione di Genova, Genoa, Italy; (b)Dipartimento di Fisica, Università di Genova, Genoa, Italy
    • 53 (a)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
    • 54 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
    • 55 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
    • 56 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
    • 57 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
    • 58 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
    • 59 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c)ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
    • 60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
    • 110 Department of Physics, New York University, New York, NY, USA
    • 111 Ohio State University, Columbus, OH, USA
    • 112 Faculty of Science, Okayama University, Okayama, Japan
    • 113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
    • 114 Department of Physics, Oklahoma State University, Stillwater, OK, USA
    • 115 Palacký University, RCPTM, Olomouc, Czech Republic
    • 116 Center for High Energy Physics, University of Oregon, Eugene, OR, USA
    • 117 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
    • 118 Graduate School of Science, Osaka University, Osaka, Japan
    • 119 Department of Physics, University of Oslo, Oslo, Norway
    • 120 Department of Physics, Oxford University, Oxford, UK
    • 121 (a)INFN Sezione di Pavia, Pavia, Italy; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy
    • 122 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
    • 123 National Research Centre “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
    • 124 (a)INFN Sezione di Pisa, Pisa, Italy; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
    • 125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
    • 126 (a)Laboratório de Instrumentação e Física Experimental de Partículas-LIP, Lisbon, Portugal; (b)Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; (c)Department of Physics, University of Coimbra, Coimbra, Portugal; (d)Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e)Departamento de Fisica, Universidade do Minho, Braga, Portugal; (f)Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; (g)Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
    • 127 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
    • 128 Czech Technical University in Prague, Prague, Czech Republic
    • 129 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
    • 130 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Protvino, Russia
    • 131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
    • 132 (a)INFN Sezione di Roma, Rome, Italy; (b)Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
    • 133 (a)INFN Sezione di Roma Tor Vergata, Rome, Italy; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
    • 134 (a)INFN Sezione di Roma Tre, Rome, Italy; (b)Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
    • 135 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b)Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat, Morocco; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; (e)Faculté des Sciences, Université Mohammed V, Rabat, Morocco
    • 136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
    • 137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
    • 138 Department of Physics, University of Washington, Seattle, WA, USA
    • 139 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
    • 140 Department of Physics, Shinshu University, Nagano, Japan
    • 141 Fachbereich Physik, Universität Siegen, Siegen, Germany
    • 142 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
    • 143 SLAC National Accelerator Laboratory, Stanford, CA, USA
    • 144 (a)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
    • 145 (a)Department of Physics, University of Cape Town, Cape Town, South Africa; (b)Department of Physics, University of Johannesburg, Johannesburg, South Africa; (c)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
    • 146 (a)Department of Physics, Stockholm University, Stockholm, Sweden; (b)The Oskar Klein Centre, Stockholm, Sweden
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok