LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ferns, Gordon A A; Heikal, Lamia (2016)
Publisher: SAGE Publications
Languages: English
Types: Article
Subjects:
The anoxemia theory proposes that an imbalance between the demand for and supply of oxygen in the arterial wall is a key factor in the development of atherosclerosis. There is now substantial evidence that there are regions within the atherosclerotic plaque in which profound hypoxia exists; this may fundamentally change the function, metabolism, and responses of many of the cell types found within the developing plaque and whether the plaque will evolve into a stable or unstable phenotype. Hypoxia is characterized in molecular terms by the stabilization of hypoxia-inducible factor (HIF) 1a, a subunit of the heterodimeric nuclear transcriptional factor HIF-1 and a master regulator of oxygen homeostasis. The expression of HIF-1 is localized to perivascular tissues, inflammatory macrophages, and smooth muscle cells adjacent to the necrotic core of atherosclerotic lesions and regulates several genes that are important to vascular function including vascular endothelial growth factor, nitric oxide synthase, endothelin-1, and erythropoietin. This review summarizes the effects of hypoxia on the functions of cells involved in atherogenesis and the evidence for its potential importance from experimental models and clinical studies.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Xiao W, Jia Z, Zhang Q, Wei C, Wang H, Wu Y. Inflammation and oxidative stress, rather than hypoxia, are predominant factors promoting angiogenesis in the initial phases of atherosclerosis. Mol Med Rep. 2015; 12: 3315-22.
    • 2. Gainer JL. Hypoxia and atherosclerosis. Re-evaluation of the old hypothesis. Atherosclerosis. 1987; 68: 263-6.
    • 3. Bjornheden T, Levin M, Evaldsson M, Wiklund O. Evidence of hypoxic areas within the arterial wall in vivo. Arterioscl Thromb Vasc Biol. 1999; 19: 870-6.
    • 4. Mateo J, Izquierdo-Garcia D, Badimon JJ, Fayad ZA, Fuster V. Noninvasive Assessment of Hypoxia in Rabbit Advanced Atherosclerosis Using F-18-fluoromisonidazole Positron Emission Tomographic Imaging. Circ Cardiovasc Imaging. 2014; 7: 312-20.
    • 5. Kuschel A, Simon P, Tug S. Functional regulation of HIF-1a under normoxiauis there more than post-translational regulation? J Cell Physiol. 2012; 227: 514-24.
    • 6. Wu D, Yotnda P. Induction and Testing of Hypoxia in Cell Culture. J Vis Exp. 2011;(54). pii: 2899.
    • 7. Harris AL. Hypoxia- a key regulatory factor in tumour growth. Nat Rev Cancer. 2002; 2: 38-47.
    • 8. Giaccia A, Siim BG, Johnson RS. HIF-1 as a target for drug development. Nat Rev Drug Discov. 2003; 2: 803-11.
    • 9. Carroll VA, Ashcroft M. Role of hypoxia-inducible factor (HIF)-1 alpha-versus HIF-2 alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-1, or loss of von Hippel-Lindau function: Implications for targeting the HIF pathway. Cancer Res. 2006; 66: 6264-70.
    • 10. Lim CS, Kiriakidis S, Sandison A, Paleolog EM, Davies AH. Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg. 2013; 58: 219-30.
    • 11. Kasivisvanathan V, Shalhoub J, Lim CS, Shepherd AC, Thapar A, Davies AH. HypoxiaInducible Factor-1 in Arterial Disease: A Putative Therapeutic Target. Curr Vasc Pharmacol. 2011; 9: 333-49.
    • 12. Li G, Lu W-h, Ai R, Yang J-h, Chen F, Tang Z-z. The relationship between serum hypoxiainducible factor 1 alpha and coronary artery calcification in asymptomatic type 2 diabetic patients. Cardiovasc Diabetol. 2014; 13.
    • 13. Ismail S, Mayah W, Battia HE, et al. Plasma nuclear factor kappa B and serum peroxiredoxin 3 in early diagnosis of hepatocellular carcinoma. APJCP. 2015; 16: 1657-63.
    • 14. Attallah AM, Abdel-Aziz MM, El-Sayed AM, Tabll AA. Detection of serum p53 protein in patients with different gastrointestinal cancers. Cancer Detect Prev. 2003; 27: 127-31.
    • 15. Jarvilehto M, Tuohimaa P. Vasa vasorum hypoxia: Initiation of atherosclerosis. Med Hypotheses. 2009; 73: 40-1.
    • 16. Barger AC, Beeuwkes R, Lainey LL, Silverman KJ. Hypothesis-vasa vasorumand neovascularisation of human coronary arteries- a possible role in the path-physiologyof atherosclerosis. N Engl J Med. 1984; 310: 175-7.
    • 17. Faggiotto A, Ross R, Harker L. Studies of hypercholesterolemia in the non-human primate. I. Changes that lead to fatty streak formation. Arteriosclerosis. 1984; 4: 323-40.
    • 18. Ross R. Mechanisms of disease - Atherosclerosis - An inflammatory disease. N Engl J Med. 1999; 340: 115-26.
    • 19. Rademakers T, Douma K, Hackeng TM, et al. Plaque-Associated Vasa Vasorum in Aged Apolipoprotein E-Deficient Mice Exhibit Proatherogenic Functional Features In Vivo. Arterioscl Thromb Vasc Biol. 2013; 33: 249-56.
    • 20. Moreno PR, Purushothaman KR, Zias E, Sanz J, Fuster V. Neovascularization in human atherosclerosis. Curr Mol Med. 2006; 6: 457-77.
    • 21. Barker SGE, Talbert A, Cottam S, Baskerville PA, Martin JF. Arterial intimal hyperplasia after occlusion of the adventitial vasa vasorum in the pig. Arterioscl Thromb. 1993; 13: 70-7.
    • 22. Khurana R, Zhuang Z, Bhardwaj S, et al. Angiogenesis-Dependent and Independent Phases of Intimal Hyperplasia. Circulation. 2004; 110: 2436-43.
    • 23. Parathath S, Yang Y, Mick S, Fisher EA. Hypoxia in murine atherosclerotic plaques and its adverse effects on macrophages. Trends Cardiovasc Med. 2013; 23: 80-4.
    • 24. Bjornheden T, Evaldsson M, Wiklund O. A method for the assessment of hypoxia in the arterial wall, with potential application in vivo. Arterioscl Thromb Vasc Biol. 1996; 16: 178-85.
    • 25. Buscombe JR. Exploring the nature of atheroma and cardiovascular inflammation in vivo using positron emission tomography (PET). Br J Radiol. 2015; 88.
    • 26. Pedersen SF, Grabe M, Hag AMF, Hojgaard L, Sillesen H, Kjar A. (18)F-FDG imaging of human atherosclerotic carotid plaques reflects gene expression of the key hypoxia marker HIF-1alpha. Am J Nucl Med Mol Imag. 2013; 3: 384-92.
    • 27. Goggins BJ, Chaney C, Radford-Smith GL, Horvat JC, Keely S. Hypoxia and integrin-mediated epithelial restitution during mucosal inflammation. Front Immunol. 2013; 4.
    • 28. Myllyharju J. Prolyl 4-hydroxylases, master regulators of the hypoxia response. Acta Physiologica. 2013; 208: 148-65.
    • 29. Provenzano R, Besarab A, Sun CH, et al. Oral Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Roxadustat (FG-4592) for the Treatment of Anemia in Patients with CKD. Clin J Am Soc Nephrol. 2016; 11: 982-91.
    • 30. Jain MR, Joharapurkar AA, Pandya V, et al. Pharmacological Characterization of ZYAN1, a Novel Prolyl Hydroxylase Inhibitor for the Treatment of Anemia. Drug Res. 2016; 66: 107-12.
    • 31. Beuck S, Schaenzer W , Thevis M. Hypoxia-inducible factor stabilizers and other small-molecule erythropoiesis-stimulating agents in current and preventive doping analysis. Drug Test Anal. 2012; 4: 830-45.
    • 32. Yousaf F, Spinowitz B. Hypoxia-Inducible Factor Stabilizers: a New Avenue for Reducing BP While Helping Hemoglobin? Curr Hypertens Rep. 2016; 18.
    • 33. Maxwell PH, Eckardt K-U. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephr. 2016; 12: 157-68.
    • 34. Ahluwalia A, Tarnawski AS. Critical Role of Hypoxia Sensor - HIF-1 alpha in VEGF Gene Activation. Implications for Angiogenesis and Tissue Injury Healing. Curr Med Chem. 2012; 19: 90-7.
    • 35. Gorlach A, Dimova EY, Petry A, et al. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Red Biol. 2015; 6: 372-85.
    • 36. Gao L, Chen Q, Zhou X, Fan L. The role of hypoxia-inducible factor 1 in atherosclerosis. J Clin Pathol. 2012; 65: 872-6.
    • 37. Kim Y-W, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood. 2014; 123: 625-31.
    • 38. Hulten LM, Levin M. The role of hypoxia in atherosclerosis. Curr Opin Lipidol. 2009; 20: 409- 14.
    • 39. Marsch E, Sluimer JC, Daemen MJAP. Hypoxia in atherosclerosis and inflammation. Curr Opin Lipidol. 2013; 24: 393-400.
    • 40. Widlansky ME, Gokce N, Keaney JF, Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Cardiol. 2003; 42: 1149-60.
    • 41. Jamaluddin MS, Liang Z, Lu J-M, Yao Q, Chen C. Roles of Cardiovascular Risk Factors in Endothelial Nitric Oxide Synthase Regulation: An Update. Curr Pharm Des. 2014; 20: 3563-78.
    • 42. Cattaneo MG, Cappellini E, Benfante R, et al. Chronic Deficiency of Nitric Oxide Affects Hypoxia Inducible Factor-1 alpha (HIF-1 alpha) Stability and Migration in Human Endothelial Cells. PLoS One. 2011; 6.
    • 43. Berchner-Pfannschmidt U, Yamac H, Trinidad B, Fandrey J. Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem. 2007; 282: 1788-96.
    • 44. Hagen T, Taylor CT, Lam F, Moncada S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: Effect on HIF1 alpha. Science. 2003; 302: 1975-8.
    • 45. Lundberg JO, Weitzberg E. NO-synthase independent NO generation in mammals. Biochem Biophys Res Commun. 2010; 396: 39-45.
    • 46. Li D, Wang C, Li N, Zhang L. Propofol selectively inhibits nuclear factor-kappa B activity by suppressing p38 mitogen-activated protein kinase signaling in human EA.hy926 endothelial cells during intermittent hypoxia/reoxygenation. Mol Med Report. 2014; 9: 1460-6.
    • 47. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004; 5: 343-54.
    • 48. Ziegelstein RC, He CX, Hu QH. Hypoxia/reoxygenation stimulates Ca2+-dependent ICAM-1 mRNA expression in human aortic endothelial cells. Biochem Biophys Res Commun. 2004; 322: 68-73.
    • 49. Kitagawa K, Matsumoto M, Sasaki T, et al. Involvement of ICAM-1 in the progression of atherosclerosis in APOE-knockout mice. Atherosclerosis. 2002; 160: 305-10.
    • 50. Zhang M, Zhu H, Ding Y, Moriasi C, Liu Z, Zou M-H. Abstract 283: Role of AMP-Activated Protein Kinase α1 in Atherosclerosis. Arterioscl Thromb Vasc Biol. 2014; 34: A283.
    • 51. de Meester C, Timmermans AD, Balteau M, et al. Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells. Cardiovasc Res. 2014; 101: 20-9.
    • 52. Colombo SL, Moncada S. AMPK alpha 1 regulates the antioxidant status of vascular endothelial cells. Biochem J. 2009; 421: 163-9.
    • 53. Dong Y, Zhang M, Liang B, et al. Reduction of AMP-Activated Protein Kinase alpha 2 Increases Endoplasmic Reticulum Stress and Atherosclerosis In Vivo. Circulation. 2010; 121: 792-803.
    • 54. Asplund A, Ostergren-Lunden G, Camejo G, Stillemark-Billton P, Bondjers G. Hypoxia increases macrophage motility, possibly by decreasing the heparan sulfate proteoglycan biosynthesis. J Leukoc Biol. 2009; 86: 381-8.
    • 55. Karlinsky JB, Rounds S, Farber HW. Effects of hypoxia on heparan-sulfate in bovine aortic and pulmonary artery endothelial cells. Circ Res. 1992; 71: 782-9.
    • 56. Urbich C, Dimmeler S. Endothelial progenitor cells - Characterization and role in vascular biology. Circ Res. 2004; 95: 343-53.
    • 57. Zhang J, Liu Q, Hu X, et al. Apelin/APJ signaling promotes hypoxia-induced proliferation of endothelial progenitor cells via phosphoinositide-3 kinase/Akt signaling. Mol Med Report. 2015; 12: 3829-34.
    • 58. Lv DG, Li HN, Chen LX. Apelin and APJ, a novel critical factor and therapeutic target for atherosclerosis. Acta Biochim Biophys Sinica. 2013; 45: 527-33.
    • 59. Fisher JW. Erythropoietin: Physiology and pharmacology update. Exp Biol Med. 2003; 228: 1- 14.
    • 60. Ogunshola OO, Bogdanova AY. Epo and non-hematopoietic cells: what do we know? Meth Mol Biol. 2013; 982: 13-41.
    • 61. Ammarguellat F, Llovera M, Kelly PA, Goffin V. Low doses of EPO activate MAP kinases but not JAK2-STAT5 in rat vascular smooth muscle cells. Biochem Biophys Res Commun. 2001; 284: 1031-8.
    • 62. Iversen PO, Nicolaysen A, Kvernebo K, Benestad HB, Nicolaysen G. Human cytokines modulate arterial vascular tone via endothelial receptors. Pflug Arch-Europ J Physiol. 1999; 439: 93-100.
    • 63. Akimoto T, Kusano E, Inaba T, et al. Erythropoietin regulates vascular smooth muscle cell apoptosis by a phosphatidylinositol 3 kinase-dependent pathway. Kidney Int. 2000; 58: 269-82.
    • 64. Ribatti D, Vacca A, Roccaro AM, Crivellato E, Presta M. Erythropoietin as an angiogenic factor. Eur J Clin Invest. 2003; 33: 891-6.
    • 65. Kertesz N, Wu J, Chen THP, Sucov HM, Wu H. The role of erythropoietin in regulating angiogenesis. Dev Biol. 2004; 276: 101-10.
    • 66. Reddy MK, Vasir JK, Hegde GV, Joshi SS, Labhasetwar V. Erythropoietin induces excessive neointima formation: A study in a rat carotid artery model of vascular injury. J Cardiovasc Pharmacol Ther. 2007; 12: 237-47.
    • 67. Urao N, Okigaki M, Yamada H, et al. Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ Res. 2006; 98: 1405-13.
    • 68. Stein A, Mohr F, Laux M, et al. Erythropoietin-induced progenitor cell mobilisation in patients with acute ST-segment-elevation myocardial infarction and restenosis. Thromb Haemost. 2012; 107: 769-74.
    • 69. Beleslin-Cokic BB, Cokic VP, Yu XB, Weksler BB, Schechter AN, Noguchi CT. Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood. 2004; 104: 2073-80.
    • 70. Lee T-S, Lu K-Y, Yu Y-B, Lee H-T, Tsai F-C. Beta Common Receptor Mediates ErythropoietinConferred Protection on OxLDL-Induced Lipid Accumulation and Inflammation in Macrophages. Mediators Inflamm. 2015; 2015: 13.
    • 71. Ueba H, Shiomi M, Brines M, et al. Suppression of Coronary Atherosclerosis by Helix B Surface Peptide, a Nonerythropoietic, Tissue-Protective Compound Derived from Erythropoietin. Mol Med. 2013; 19: 195-202.
    • 72. Wang L, Di L, Noguchi CT. Erythropoietin, a Novel Versatile Player Regulating Energy Metabolism beyond the Erythroid System. Int J Biol Sci. 2014; 10: 921-39.
    • 73. Koury MJ, Haase VH. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat Rev Nephr. 2015; 11: 394-410.
    • 74. Schroeder K, Kohnen A, Aicher A, et al. NADPH Oxidase Nox2 Is Required for HypoxiaInduced Mobilization of Endothelial Progenitor Cells. Circ Res. 2009; 105: 537-44.
    • 75. Burnstock G, Ralevic V. Purinergic Signaling and Blood Vessels in Health and Disease. Pharmacol Rev. 2014; 66: 102-92.
    • 76. To WKL, Kumar P, Marshall JM. Hypoxia is an effective stimulus for vesicular release of ATP from human umbilical vein endothelial cells. Placenta. 2015; 36: 759-66.
    • 77. Yang D, Gao L, Wang T, Qiao Z, Liang Y, Zhang P. Hypoxia triggers endothelial endoplasmic reticulum stress and apoptosis via induction of VLDL receptor. FEBS Lett. 2014; 588: 4448-56.
    • 78. Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005; 96: 1221-32.
    • 79. Rader DJ. New Therapeutic Approaches to the Treatment of Dyslipidemia. Cell Metab. 2016; 23: 405-12.
    • 80. Tan JTM, Prosser HCG, Vanags LZ, Monger SA, Ng MKC, Bursill CA. High- density lipoproteins augment hypoxia-induced angiogenesis via regulation of post- translational modulation of hypoxia- inducible factor 1 alpha. FASEB J. 2014; 28: 206-17.
    • 81. Chakrabarti S, Rizvi M, Pathak D, Kirber MT, Freedman JE. Hypoxia influences CD40-CD40L mediated inflammation in endothelial and monocytic cells. Immunol Lett. 2009; 122: 170-84.
    • 82. Kim E-J, Yoo Y-G, Yang W-K, et al. Transcriptional activation of HIF-1 by ROR alpha and its role in hypoxia signaling. Arterioscl Thromb Vasc Biol. 2008; 28: 1796-802.
    • 83. Zhou W, Lin J, Chen H, Wang J, Liu Y, Xia M. Retinoic acid induces macrophage cholesterol efflux and inhibits atherosclerotic plaque formation in apoE-deficient mice. Br J Nutr. 2015; 114: 509-18.
    • 84. Victor VM, Nunez C, D'Ocon P, Taylor CT, Esplugues JV, Moncada S. Regulation of Oxygen Distribution in Tissues by Endothelial Nitric Oxide. Circ Res. 2009; 104: 1178-U121.
    • 85. Channon KM, Qian H, George SE. Nitric Oxide Synthase in Atherosclerosis and Vascular Injury: Insights From Experimental Gene Therapy. Arterioscl Thromb Vasc Biol. 2000; 20: 1873-81.
    • 86. Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The Role of Nitric Oxide on Endothelial Function. Curr Vasc Pharmacol. 2012; 10: 4-18.
    • Ross R. The pathogenesis of atherosclerosis- an update. N Engl J Med. 1986; 314: 488-500.
    • Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000; 6: 389-95.
    • Stavri GT, Zachary IC, Baskerville PA, Martin JF, Erusalimsky JD. Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells - Synergistic interaction with hypoxia. Circulation. 1995; 92: 11-4.
    • 91. Stavri GT, Hong Y, Zachary IC, et al. Hypoxia and platelet derived growth factor-BB synergistically up regulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. FEBS Lett. 1995; 358: 311-5.
    • 92. Schultz K, Fanburg BL, Beasley D. Hypoxia and hypoxia-inducible factor-1 alpha promote growth factor-induced proliferation of human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2006; 290: H2528-H34.
    • 93. Figueroa JE, Tao Z, Sarphie TG, Smart FW, Glancy DL, Vijayagopal P. Effect of hypoxia and hypoxia/reoxygenation on proteoglycan metabolism by vascular smooth muscle cells. Atherosclerosis. 1999; 143: 135-44.
    • 94. Osada-Oka M, Ikeda T, Imaoka S, Akiba S, Sato T. VEGF-enhanced proliferation under hypoxia by an autocrine mechanism in human vascular smooth muscle cells. J Atheroscl Thromb. 2008; 15: 26-33.
    • 95. Osada-Oka M, Ikeda T, Akiba S, Sato T. Hypoxia stimulates the autocrine regulation of migration of vascular smooth muscle cells via HIF-1 alpha-dependent expression of thrombospondin-1. J Cell Biochem. 2008; 104: 1918-26.
    • 96. Fu H, Luo F, Yang L, Wu W, Liu X. Hypoxia stimulates the expression of macrophage migration inhibitory factor in human vascular smooth muscle cells via HIF-1 alpha dependent pathway. BMC Cell Biol. 2010; 11.
    • 97. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998; 395: 763-70.
    • 98. Grosfeld A, Andre J, Hauguel-de-Mouzon S, Berra E, Pouyssegur J, Guerre-Millo M. Hypoxiainducible factor 1 transactivates the human leptin gene promoter. J Biol Chem. 2002; 277: 42953- 7.
    • 99. Kougias P, Chai H, Lin PH, Yao QZ, Lumsden AB, Chen CY. Effects of adipocyte-derived cytokines on endothelial functions: implication of vascular disease. J Surg Res. 2005; 126: 121- 9.
    • 100. Chiu C-Z, Wang B-W, Shyu K-G. Molecular regulation of the expression of leptin by hypoxia in human coronary artery smooth muscle cells. J Biomed Sci. 2015; 22.
    • 101. Paneth N, Susser M. Early origin of coronary heart disease (The Baker hypothesis). Br Med J. 1995; 310: 411-2.
    • 102. Lv G, Li Y, Wang Z, Lin H. Hypoxia stimulates the proliferation of neonatal rat vascular smooth muscle cells through activation of hypoxia-inducible factor-1 alpha. Int J Clin Exp Med. 2015; 8: 496-503.
    • 103. Roehrborn D, Eckel J, Sell H. Shedding of dipeptidyl peptidase 4 is mediated by metalloproteases and up-regulated by hypoxia in human adipocytes and smooth muscle cells. FEBS Lett. 2014; 588: 3870-7.
    • 104. Zhong J, Rao X, Oghumu S, Braunstein Z, Satoskar A, Rajagopalan S. Abstract 480: Increased Expression of Dipeptidyl Peptidase-4 in Atherosclerosis: A Role for TLR4/MyD88 Signaling. Arterioscler Thromb Vasc Biol. 2014; 34: A480.
    • 105. Mita T, Katakami N, Yoshii H, et al. Alogliptin, a Dipeptidyl Peptidase 4 Inhibitor, Prevents the Progression of Carotid Atherosclerosis in Patients With Type 2 Diabetes: The Study of Preventive Effects of Alogliptin on Diabetic Atherosclerosis (SPEAD-A). Diabetes Care. 2016; 39: 139-48.
    • 106. Kyotani Y, Ota H, Itaya-Hironaka A, et al. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor. Exp Cell Res. 2013; 319: 3042-50.
    • 107. Ryan S, Taylor CT, McNicholas WT. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation. 2005; 112: 2660-7.
    • 108. Castellano J, Aledo R, Sendra J, et al. Hypoxia Stimulates Low-Density Lipoprotein ReceptorRelated Protein-1 Expression Through Hypoxia-Inducible Factor-1 alpha in Human Vascular Smooth Muscle Cells. Arterioscl Thromb Vasc Biol. 2011; 31: 1411-U391.
    • 109. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature. 2001; 409: 307-12.
    • 110. Kushiyama A, Sakoda H, Oue N, et al. Resistin-Like Molecule Is Abundantly Expressed in Foam Cells and Is Involved in Atherosclerosis Development. Arterioscl Thromb Vasc Biol. 2013; 33: 1986-93.
    • 111. Maresca F, Di Palma V, Bevilacqua M, et al. Adipokines, Vascular Wall, and Cardiovascular Disease: A Focused Overview of the Role of Adipokines in the Pathophysiology of Cardiovascular Disease. Angiology. 2015; 66: 8-24.
    • 112. Hung H-F, Wang B-W, Chang H, Shyu K-G. The molecular regulation of resistin expression in cultured vascular smooth muscle cells under hypoxia. J Hypertens. 2008; 26: 2349-60.
    • 113. Hutter R, Speidl WS, Valdiviezo C, et al. Macrophages Transmit Potent Proangiogenic Effects of oxLDL In Vitro and In Vivo Involving HIF-1 alpha Activation: a Novel Aspect of Angiogenesis in Atherosclerosis. J Cardiovasc Transl Res. 2013; 6: 558-69.
    • 114. Matsumoto K, Taniguchi T, Fujioka Y, Shimizu H, Ishikawa Y, Yokoyama M. Effects of hypoxia on cholesterol metabolism in human monocyte-derived macrophages. Life Sci. 2000; 67: 2083- 91.
    • 115. Shashkin P, Dragulev B, Ley K. Macrophage differentiation to foam cells. Curr Pharm Des. 2005; 11: 3061-72.
    • 116. Crucet M, Wuest SJA, Spielmann P, Luescher TF, Wenger RH, Matter CM. Hypoxia enhances lipid uptake in macrophages: Role of the scavenger receptors Lox1, SRA, and CD36. Atherosclerosis. 2013; 229: 110-7.
    • 117. Jiang G, Li T, Qiu Y, Rui Y, Chen W, Lou Y. RNA interference for HIF-1 alpha inhibits foam cells formation in vitro. Eur J Pharmacol. 2007; 562: 183-90.
    • 118. Ugocsai P, Hohenstatt A, Paragh G, et al. HIF-1beta determines ABCA1 expression under hypoxia in human macrophages. Int J Biochem Cell Biol. 2010; 42: 241-52.
    • 119. Fisslthaler B, Fleming I. Activation and Signaling by the AMP-Activated Protein Kinase in Endothelial Cells. Circ Res. 2009; 105: 114-27.
    • 120. Asplund A, Stillemark-Billton P, Larsson E, et al. Hypoxic regulation of secreted proteoglycans in macrophages. Glycobiology. 2010; 20: 33-40.
    • 121. Asplund A, Friden V, Stillemark-Billton P, Camejo G, Bondjers G. Macrophages exposed to hypoxia secrete proteoglycans for which LDL has higher affinity. Atherosclerosis. 2011; 215: 77-81.
    • 122. Deguchi J-o, Yamazaki H, Aikawa E, Aikawa M. Chronic Hypoxia Activates the Akt and betaCatenin Pathways in Human Macrophages. Arterioscl Thromb Vasc Biol. 2009; 29: 1664-U628.
    • 123. Cole JE, Kassiteridi C, Monaco C. Toll-like receptors in atherosclerosis: a 'Pandora's box' of advances and controversies. Trends Pharmacol Sci. 2013; 34: 629-36.
    • 124. Kim SY, Jeong E, Joung SM, Lee JY. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress. Biochem Biophys Res Commun. 2012; 419: 466-71.
    • 125. Libby P, Lichtman AH, Hansson GK. Immune Effector Mechanisms Implicated in Atherosclerosis: From Mice to Humans. Immunity. 2013; 38: 1092-104.
    • 126. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996; 87: 2095-147.
    • 127. Folco EJ, Sukhova GK, Quillard T, Libby P. Moderate Hypoxia Potentiates Interleukin-1 beta Production in Activated Human Macrophages. Circ Res. 2014; 115: 875-83.
    • 128. Tawakol A, Singh P, Mojena M, et al. HIF-1 alpha and PFKFB3 Mediate a Tight Relationship Between Proinflammatory Activation and Anerobic Metabolism in Atherosclerotic Macrophages. Arterioscl Thromb Vasc Biol. 2015; 35: 1463-71.
    • 129. Burke B, Giannoudis A, Corke KP, et al. Hypoxia-induced gene expression in human macrophages - Implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol. 2003; 163: 1233-43.
    • 130. Zernecke A. Dendritic Cells in Atherosclerosis: Evidence in Mice and Humans. Arterioscler Thromb Vasc Biol. 2015; 35: 763-70.
    • 131. Niessner A, Weyand CM. Dendritic cells in atherosclerotic disease. Clin Immunol. 2010; 134: 25-32.
    • 132. Creemers EE, Tijsen AJ, Pinto YM. Circulating MicroRNAs Novel Biomarkers and Extracellular Communicators in Cardiovascular Disease? Circ Res. 2012; 110: 483-95.
    • 133. Poitz DM, Augstein A, Gradehand C, Ende G, Schmeisser A, Strasser RH. Regulation of the Hifsystem by micro-RNA 17 and 20a - Role during monocyte-to-macrophage differentiation. Mol Immunol. 2013; 56: 442-51.
    • 134. Karshovska E, Zernecke A, Sevilmis G, et al. Expression of HIF-1 alpha in injured arteries controls SDF-1 alpha-Mediated neointima formation in apolipoprotein E-deficient mice. Arterioscl Thromb Vasc Biol. 2007; 27: 2540-7.
    • 135. Christoph M, Ibrahim K, Hesse K, et al. Local inhibition of hypoxia-inducible factor reduces neointima formation after arterial injury in ApoE(-/-) mice. Atherosclerosis. 2014; 233: 641-7.
    • 136. Akhtar S, Hartmann P, Karshovska E, et al. Endothelial Hypoxia-Inducible Factor-1 alpha Promotes Atherosclerosis and Monocyte Recruitment by Upregulating MicroRNA-19a. Hypertension. 2015; 66: 1220-6.
    • 137. Ben-Shoshan J, Afek A, Maysel-Auslender S, et al. HIF-1 alpha Overexpression and Experimental Murine Atherosclerosis. Arterioscl Thromb Vasc Biol. 2009; 29: 665-70.
    • 138. Chaudhari SM, Sluimer JC, Koch M, et al. Deficiency of HIF1 alpha in Antigen-Presenting Cells Aggravates Atherosclerosis and Type 1 T-Helper Cell Responses in Mice. Arterioscl Thromb Vasc Biol. 2015; 35: 2316-25.
    • 139. Booth RFG, Martin JF, Honey AC, Hassall DG, Beesley JE, Moncada S. Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis. 1989; 76: 257-68.
    • 140. Kurobe H, Urata M, Ueno M, et al. Role of Hypoxia-Inducible Factor 1 alpha in T Cells as a Negative Regulator in Development of Vascular Remodeling. Arterioscl Thromb Vasc Biol. 2010; 30: 210-7.
    • 141. Lindqvist A, Dreja K, Sward K, Hellstrand P. Effects of oxygen tension on energetics of cultured vascular smooth muscle. Am J Physiol Heart Circ Physiol. 2002; 283: H110-H7.
    • 142. Li QY, Feng Y, Lin YN, et al. Gender difference in protein expression of vascular wall in mice exposed to chronic intermittent hypoxia: a preliminary study. Gen Mol Res. 2014; 13: 8489-501.
    • 143. Jun J, Reinke C, Bedja D, et al. Effect of intermittent hypoxia on atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis. 2010; 209: 381-6.
    • 144. Tuleta I, Franca CN, Wenzel D, et al. Hypoxia-induced endothelial dysfunction in apolipoprotein E-deficient mice; effects of infliximab and L-glutathione. Atherosclerosis. 2014; 236: 400-10.
    • 145. Nakagawa Y, Kishida K, Kihara S, Funahashi T, Shimomura I. Adiponectin ameliorates hypoxiainduced pulmonary arterial remodeling. Biochem Biophys Res Commun. 2009; 382: 183-8.
    • 146. Ding W, Zhang X, Huang H, et al. Adiponectin protects rat myocardium against chronic intermittent hypoxia-induced injury via inhibition of endoplasmic reticulum stress. PLoS One. 2014; 9: e94545-e.
    • 147. Fang G, Song D, Ye X, Mao S-z, Liu G, Liu SF. Chronic Intermittent Hypoxia Exposure Induces Atherosclerosis in ApoE Knockout Mice Role of NF-kappa B p50. Am J Pathol. 2012; 181: 1530- 9.
    • 148. Jiang S, Jin F, Li D, et al. Intermittent Hypobaric Hypoxia Promotes Atherosclerotic Plaque Instability in ApoE-Deficient Mice. High Alt Med Biol. 2013; 14: 175-80.
    • 149. Tuleta I, Franca CN, Wenzel D, et al. Intermittent Hypoxia Impairs Endothelial Function in Early Preatherosclerosis. In: Pokorski M, (ed.). Pulmonary Function. 2015, p. 1-7.
    • 150. Guo H, Cao J, Li J, et al. Lymphocytes from intermittent hypoxia-exposed rats increase the apoptotic signals in endothelial cells via oxidative and inflammatory injury in vitro. Sleep Breath. 2015; 19: 969-76.
    • 151. Van Noolen L, Bäck M, Arnaud C, et al. Docosahexaenoic acid supplementation modifies fatty acid incorporation in tissues and prevents hypoxia induced-atherosclerosis progression in apolipoprotein-E deficient mice. Prostag, Leukotr Ess Fat Acids. 91: 111-7.
    • 152. Marsch E, Theelen TL, Demandt JAF, et al. Reversal of Hypoxia in Murine Atherosclerosis Prevents Necrotic Core Expansion by Enhancing Efferocytosis. Arterioscler Thromb Vasc Biol. 2014; 34: 2545-53.
    • 153. Qin T, Sun Y-Y, Bai W-W, et al. Period2 Deficiency Blunts Hypoxia-Induced Mobilization and Function of Endothelial Progenitor Cells. PLoS One. 2014; 9: e108806.
    • 164. Vink A, Schoneveld AH, Lamers D, et al. HIF-1alpha expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages. Atherosclerosis. 2007; 195: E69-E75.
    • 165. Sluimer JC, Gasc J-M, van Wanroij JL, et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol. 2008; 51: 1258-65.
    • 166. Chuang L-P, Chen N-H, Lin S-W, et al. Increased C-C Chemokine Receptor 2 Gene Expression in Monocytes of Severe Obstructive Sleep Apnea Patients and under Intermittent Hypoxia. PLoS One. 2014; 9.
    • 167. Ramkhelawon B, Yang Y, van Gils JM, et al. Hypoxia Induces Netrin-1 and Unc5b in Atherosclerotic Plaques Mechanism for Macrophage Retention and Survival. Arterioscler Thromb Vasc Biol. 2013; 33: 1180-+.
    • 168. van Gils JM, Derby MC, Fernandes LR, et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat Immunol. 2012; 13: 136-43.
    • 169. Okami N, Kawamata T, Yamamoto G, Okada Y, Hori T, Tachikawa T. Laser microdissectionbased analysis of hypoxia- and thioredoxin-related genes in human stable carotid plaques. Cardiovasc Pathol. 2009; 18: 294-300.
    • 170. Higashida T, Kanno H, Nakano M, Funakoshi K, Yamamoto I. Expression of hypoxia-inducible angiogenic proteins (hypoxia-inducible factor-1 alpha, vascular endothelial growth factor, and E26 transformation-specific-1) and plaque hemorrhage in human carotid atherosclerosis. J Neurosurg. 2008; 109: 83-91.
    • 171. Resar JR, Roguin A, Voner J, et al. Hypoxia-inducible factor 1 alpha polymorphism and coronary collaterals in patients with ischemic heart disease. Chest. 2005; 128: 787-91.
    • 172. Strauss E, Waliszewski K, Oszkinis G, Staniszewski R. Polymorphisms of genes involved in the hypoxia signaling pathway and the development of abdominal aortic aneurysms or large-artery atherosclerosis. J Vasc Surg. 2015; 61: 1105-U333.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    65
    65%
  • No similar publications.

Share - Bookmark

Cite this article