You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
We investigate how discrete internal degrees of freedom in a quasimacroscopic system affect the violation of the Leggett-Garg inequality, a test of macroscopic realism based on temporal correlation functions. As a specific example, we focus on an ensemble of qubits subject to collective and individual noise. This generic model can describe a range of physical systems, including atoms in cavities, electron or nuclear spins in nitrogen-vacancy (NV) centers in diamond, erbium in Y2SiO5, bismuth impurities in silicon, or arrays of superconducting circuits, to indicate but a few. Such large ensembles are potentially more macroscopic than other systems that have been used so far for testing the Leggett-Garg inequality and open a route toward probing the boundaries of quantum mechanics at macroscopic scales. We find that, because of the nontrivial internal structure of such an ensemble, the behavior of different measurement schemes, under the influence of noise, can be surprising. We discuss which measurement schemes are optimal for flux qubits and NV centers, and some of the technological constraints and difficulties for observing such violations with present-day experiments.
[6] J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature (London) 474, 589 (2011).
[7] J. M. Chow, L. DiCarlo, J. M. Gambetta, A. Nunnenkamp, L. S. Bishop, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Detecting highly entangled states with a joint qubit readout, Phys. Rev. A 81, 062325 (2010).
[8] M. E. Goggin, M. P. Almeida, M. Barbieri, B. P. Lanyon, J. L. O'Brien, A. G. White, and G. J. Pryde, Violation of the Leggett-Garg inequality with weak measurements of photons, Proc. Natl. Acad. Sci. U.S.A. 108, 1256 (2011).
[9] G. C. Knee, S. Simmons, E. M. Gauger, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, K. M. Itoh, M. L. W. Thewalt, G. A. D. Briggs, and S. C. Benjamin, Violation of a Leggett-Garg inequality with ideal non-invasive measurements, Nat. Commun. 3, 606 (2012).
[10] A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, and A. N. Korotkov, Experimental violation of a Bell's inequality in time with weak measurement, Nat. Phys. 6, 442 (2010).
[12] G.-Y. Chen, N. Lambert, C.-M. Li, Y.-N. Chen, and F. Nori, Delocalized single-photon Dicke states and the Leggett-Garg inequality in solid-state systems, Sci. Rep. 2, 869 (2012).
[13] J. G. E. Harris, D. D. Awschalom, K. D. Maranowski, and A. C. Gossard, Fabrication and characterization of 100-nm-thick GaAs cantilevers, Rev. Sci. Instrum. 67, 3591 (1996).
[14] P. Treutlein, D. Hunger, S. Camerer, T. W. Ha¨nsch, and J. Reichel, Bose-Einstein Condensate Coupled to a Nanomechanical Resonator on an Atom Chip, Phys. Rev. Lett. 99, 140403 (2007).
[15] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys. 6, 707 (2010).
[16] N. Lambert, R. Johansson, and F. Nori, Macrorealism inequality for optoelectromechanical systems, Phys. Rev. B 84, 245421 (2011).
[17] A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, Dispersive optomechanics: a membrane inside a cavity, New J. Phys. 10, 095008 (2008).
[18] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85, 623 (2013).
[21] C. Budroni and C. Emary, Temporal Quantum Correlations and Leggett-Garg Inequalities in Multilevel Systems, Phys. Rev. Lett. 113, 050401 (2014).
[22] V. V. Dodonov and A. V. Dodonov, QED effects in a cavity with a time-dependent thin semiconductor slab excited by laser pulses, J. Phys. B: At., Mol. Opt. Phys. 39, S749 (2006).
[23] R. E. George, L. M. Robledo, O. J. E. Maroney, M. S. Blok, H. Bernien, M. L. Markham, D. J. Twitchen, J. J. L. Morton, G. A. D. Briggs, and R. Hanson, Opening up three quantum boxes causes classically undetectable wave function collapse, Proc. Natl. Acad. Sci. U.S.A. 110, 3777 (2013).
[24] C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, and F. Nori, Witnessing quantum coherence: from solid-state to biological systems, Sci. Rep. 2, 885 (2012).
[25] J. Kofler and Cˇ . Brukner, Condition for macroscopic realism beyond the Leggett-Garg inequalities, Phys. Rev. A 87, 052115 (2013).
[26] C. Budroni, G. Vitagliano, G. Colangelo, R. J. Sewell, O. Gu¨hne, G. T o´th, and M. W. Mitchell, Quantum Nondemolition Measurement Enables Macroscopic Leggett-Garg Tests, Phys. Rev. Lett. 115, 200403 (2015).
[27] These examples comprise a rich energy-level structure, and we assume here that two levels have been isolated well from the rest (for example, by applying a magnetic field), so that they are the only relevant states.
[28] N. Lambert, C. Emary, Y.-N. Chen, and F. Nori, Distinguishing Quantum and Classical Transport Through Nanostructures, Phys. Rev. Lett. 105, 176801 (2010).
[30] T. Fritz, Quantum correlations in the temporal Clauser-HorneShimony-Holt (CHSH) scenario, New J. Phys. 12, 083055 (2010).
[31] J. J. Halliwell, Leggett-Garg inequalities and no-signaling in time: A quasiprobability approach, Phys. Rev. A 93, 022123 (2016).
[32] G. C. Knee, K. Kakuyanagi, M.-C. Yeh, Y. Matsuzaki, H. Toida, H. Yamaguchi, A. J. Leggett, and W. J. Munro, A strict experimental test of macroscopic realism in a superconducting flux qubit, arXiv:1601.03728.
[34] J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013).
[35] R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93, 99 (1954).
[36] M. Gross and S. Haroche, Superradiance: An essay on the theory of collective spontaneous emission, Phys. Rep. 93, 301 (1982).
[37] G. L u¨ders, U¨ ber die zustandsa¨nderung durch den meßprozeß, Ann. Phys. 8, 322 (1951).
[38] G. L u¨ders, Concerning the state-change due to the measurement process, Ann. Phys. (Berlin, Ger.) 15, 663 (2006).
[39] J. Kofler and Cˇ. Brukner, Classical World Arising Out of Quantum Physics Under the Restriction of Coarse-Grained Measurements, Phys. Rev. Lett. 99, 180403 (2007).
[41] A. J. Leggett, Macroscopic quantum systems and the quantum theory of measurement, Prog. Theor. Phys. Suppl. 69, 80 (1980).
[42] M. Steffen, S. Kumar, D. P. DiVincenzo, J. R. Rozen, G. A. Keefe, M. B. Rothwell, and M. B. Ketchen, High-Coherence Hybrid Superconducting Qubit, Phys. Rev. Lett. 105, 100502 (2010).
[43] A. D. C o´rcoles, J. M. Chow, J. M. Gambetta, C. Rigetti, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen, and M. Steffen, Protecting superconducting qubits from radiation, Appl. Phys. Lett. 99, 181906 (2011).
[44] F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. P. Sears, D. Hover, T. J. Gudmundsen, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman, and W. D. Oliver, The flux qubit revisited, arXiv:1508.06299.
[45] P. Macha, G. Oelsner, J.-M. Reiner, M. Marthaler, S. Andre, G. Schon, U. Hubner, H.-G. Meyer, E. Ill'ichev, and A. V. Ustinov, Implementation of a quantum metamaterial using superconducting qubits, Nat. Commun. 5, 5146 (2014).
[46] K. Kakuyanagi, Y. Matsuzaki, C. Deprez, H. Toida, K. Semba, H. Yamaguchi, W. J. Munro, and S. Saito, Observation of collective coupling between an engineered ensemble of macroscopic artificial atoms and a superconducting resonator, arXiv:1606.04222.
[48] T. B o¨ttger, C. W. Thiel, Y. Sun, and R. L. Cone, Optical decoherence and spectral diffusion at 1.5 μm in Er3+ : Y2SiO5 versus magnetic field, temperature, and Er3+ concentration, Phys. Rev. B 73, 075101 (2006).
[50] N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, Solid-state electronic spin coherence time approaching one second, Nat. Commun. 4, 1743 (2013).
[51] A. M. Tyryshkin, S. Tojo, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, T. Schenkel, M. L W. Thewalt, K. M. Itoh, and S. A. Lyon, Electron spin coherence exceeding seconds in high purity silicon, Nat. Mater. 11, 143 (2011).
[52] A. Bienfait, J. J. Pla, Y. Kubo, M. Stern, X. Zhou, C. C. Lo, C. D. Weis, T. Schenkel, M. L. W. Thewalt, D. Vion, D. Esteve, B. Julsgaard, K. Mølmer, J. J. L. Morton, and P. Bertet, Reaching the quantum limit of sensitivity in electron spin resonance, Nat. Nanotechnol. 11, 253 (2016).
[55] J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley Publishing Company, Inc., Reading, MA, 1994).
[56] S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, Phonon-Induced Spin-Spin Interactions in Diamond Nanostructures: Application to Spin Squeezing, Phys. Rev. Lett. 110, 156402 (2013).
[57] X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S.-I. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, and K. Semba, Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond, Nature (London) 478, 221 (2011).
[59] H. Toida, Y. Matsuzaki, K. Kakuyanagi, X. Zhu, W. J. Munro, K. Nemoto, H. Yamaguchi, and S. Saito, Electron paramagnetic resonance spectroscopy using a direct current-SQUID magnetometer directly coupled to an electron spin ensemble, Appl. Phys. Lett. 108, 052601 (2016).
[60] T. Tanaka, P. Knott, Y. Matsuzaki, S. Dooley, H. Yamaguchi, W. J. Munro, and S. Saito, Proposed Robust Entanglement-Based Magnetic-Field Sensor Beyond the Standard Quantum Limit, Phys. Rev. Lett. 115, 170801 (2015).