Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Phillips, Sally Victoria
Languages: English
Types: Doctoral thesis

Classified by OpenAIRE into

mesheuropmc: embryonic structures
Phospholipase C zeta (PLCzeta) is a sperm specific isoform of phospholipase C. It has been shown to produce a long lasting series of calcium oscillations and triggers the activation of development when introduced into mammalian eggs. It is not known how PLCzeta is regulated or if its effects are specific to eggs. Here Chinese Hamster Ovary (CHO) cells were transfected with cDNA encoding PLCzeta tagged with enhanced yellow fluorescent protein (eYFP) or luciferase (LUC). Comparisons were made between these cells and cells transfected with the catalytically inactive PLCzeta, the corresponding reporter gene, or nontransfected cells. PLCzeta exhibited variable levels of nuclear localisation in a manner that depended upon time after transfection. Analysis of resting intracellular calcium levels in transfected CHO cells produced no evidence that PLCzeta expression has a significant effect upon calcium homeostasis. The calcium response to ATP receptor stimulation also remained unchanged after PLCzeta expression. A lack of any clear effect on cell viability enabled the generation of a stably transfected PLCzeta cell line. Individual cells were estimated to be expressing PLCzeta within and above the range required to initiate calcium transients in eggs, and are therefore considered to be expressing at levels comparable with that of sperm. Despite the lack of effect on calcium in CHO cells, the injection of either cytosolic extracts, or whole cells, from the PLCzeta transfected cell line were able to cause calcium oscillations in mouse eggs. Such an effect was not seen with control CHO cells. These data suggest that PLCzeta is inactive when expressed in CHO cells and yet active when subsequently introduced into an egg. The results imply that the enzymatic activity of PLCzeta may be reversibly inhibited in somatic cells, or else specifically stimulated by factors in the egg cytoplasm.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Figure 1.1 The Ca2+ signalling network.................................................................................. 3 Figure 1.2 Phosphatidylinositol (PI)........................................................................................6 Figure 1.3 Phosphoinositide metabolism...............................................................................9 Figure 1.4 The Inositol 1,4,5-trisphosphate receptor (lnsP3R).............................................. 11
    • Ha rr is, N., H ill, M., S h e n , Y., T o w n s e n d , R.J., Beeby, S. & W hite, N. (2004). A dual frequency, ultrasonic, microengineered particle manipulator. Ultrasonics, 42, 139-44.
    • Heim, R., C u bitt, A.B. & T s ie n , R.Y. (1995). Improved green fluorescence. Nature, 373, 663-4.
    • Heim, R., Pr a sher, D.C. & T s ie n , R.Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A, 91, 12501-4.
    • Herrick, S.B., S c h w e is s in g e r , D.L., Kim , S.W., Ba ya n , K.R., Ma n n , S. & Cardullo , R.A. (2005). The acrosomal vesicle of mouse sperm is a calcium store. J Cell Physiol, 202, 663-71.
    • Ho, H.C. & S u ar ez, S.S. (2001). An inositol 1,4,5-trisphosphate receptor-gated intracellular C a(2+) store is involved in regulating sperm hyperactivated motility. Biol Reprod, 65, 1606-15.
    • Hom a, S.T. & Sw a n n , K. (1994). A cytosolic sperm factor triggers calcium oscillations and membrane hyperpolarizations in human oocytes. Hum Reprod, 9, 2356-61.
    • Ho th, M. & Pe n n e r , R. (1992). Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature, 355, 353-6.
    • Huber, P.E. & Pfis te r e r , P. (2000). In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther, 7, 1516-25.
    • Hw a ng , J.I., O h , Y.S., S h in , K.J., K im , H., Ry u , S.H. & Su h , P.G. (2005). Molecular cloning and characterization of a novel phospholipase C, PLCeta. Biochem J, 389, 181-6.
    • In ouye, S. & T suji, F.l. (1994). Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett, 3 4 1 ,2 7 7 -8 0 .
    • Iredale, P.A. & H ill, S.J. (1993). Increases in intracellular calcium via activation of an endogenous P2-purinoceptor in cultured CHO-K1 cells. Br J Pharmacol, 110, 1305-10.
    • Ito , M., S hikano, T., O da, S., H o r ig u c h i, T., Ta nim o to , S., Aw aji, T., M itani, H. & M iyazaki, S. (2008). Difference in Ca2+ oscillation-inducing activity and Jaffe, L.A., G iu sti, A.F., C a rroll, D.J. & Foltz, K.R. (2001). Ca2+ signalling during fertilization of echinoderm eggs. Semin Cell Dev Biol, 12, 45-51.
    • Jaffe, L.F. (1985). Biology of fertilization. The fertilization response of the egg.\ Academic Press.
    • Jaffe, L.F. (1991). The path of calcium in cytosolic calcium oscillations: a unifying hypothesis. Proc Natl Acad Sci U S A , 88, 9883-7.
    • Jaffe, L.F. (1983). Sources of calcium in egg activation: a review and hypothesis. Dev Biol, 99, 265-76.
    • Jayaraman, T. & Ma r k s , A.R. (1997). T cells deficient in inositol 1,4,5- trisphosphate receptor are resistant to apoptosis. Mol Cell Biol, 17, 3005- 12.
    • Jayaraman, T., O n d r ia s, K., O ndriaso va, E. & Marks, A.R. (1996). Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation. Science, 272, 1492-4.
    • Jellerette, T., He , C.L., Wu, H., Pa r y s , J.B. & Fissore, R.A. (2000). Downregulation of the inositol 1,4,5-trisphosphate receptor in mouse eggs following fertilization or parthenogenetic activation. Dev Biol, 223, 238-50.
    • Jones, K.T. (1998). Ca2+ oscillations in the activation of the egg and development of the embryo in mammals. Int J Dev Biol, 42, 1-10.
    • Jones, K.T., Carroll, J., M err im an , J.A., W hittingham, D.G. & Ko n o , T. (1995). Repetitive sperm-induced Ca2+ transients in mouse oocytes are cell cycle dependent. Development, 121, 3259-66.
    • Jones, K.T., Matsu da, M., Pa r r in g to n , J., Katan, M. & Sw a nn , K. (2000). Different Ca2+-releasing abilities of sperm extracts compared with tissue extracts and phospholipase C isoforms in sea urchin egg homogenate and mouse eggs. Biochem J, 346 Pt 3, 743-9.
    • Jones, K.T., Soeller, C. & Ca nnell, M.B. (1998). The passage of Ca2+ and fluorescent markers between the sperm and egg after fusion in the mouse. Development, 125, 4627-35.
    • Ka o , J.P., A lderto n, J.M., T s ie n , R.Y. & Steinhardt, R.A. (1990). Active involvement of Ca2+ in mitotic progression of Swiss 3T3 fibroblasts. J Cell Biol, 111, 183-96.
    • Katan, M. (1998). Families of phosphoinositide-specific phospholipase C: structure and function. Biochim Biophys Acta, 1436, 5-17.
    • Kelley, G.G., Ka pr o th -Jo s lin , K.A., R eks, S.E., S mrcka, A.V. & W ojcikiew icz, R.J. (2006). G-protein-coupled receptor agonists activate endogenous phospholipase Cepsilon and phospholipase Cbeta3 in a temporally distinct manner. J Biol Chem, 281, 2639-48.
    • Kelley, G.G., Re k s , S.E., O n dr ak o , J.M. & S m rcka, A.V. (2001). Phospholipase C(epsilon): a novel Ras effector. Embo J, 20, 743-54.
    • Kelley, G.G., Re k s, S.E. & S m r ck a , A.V. (2004). Hormonal regulation of phospholipase Cepsilon through distinct and overlapping pathways involving G12 and Ras family G-proteins. Biochem J, 378, 129-39.
    • Khakh, B.S. (2001). Molecular physiology of P2X receptors and ATP signalling at synapses. Nat R ev Neurosci, 2, 165-74.
    • Khanna, S., A m s o , N.N., Pa y n t e r , S.J. & C oakley, W .T. (2003). Contrast agent bubble and erythrocyte behavior in a 1.5-MHz standing ultrasound wave. Ultrasound M ed Biol, 29, 1463-70.
    • Khanna, S., Hu d s o n , B., Pe p p e r , C.J., A m s o , N.N. & Coakley, W.T. (2006). Fluorescein isothiocynate-dextran uptake by Chinese hamster ovary cells in a 1.5 MHz ultrasonic standing wave in the presence of contrast agent. Ultrasound M ed Biol, 32, 289-95.
    • Kim, H.J., G reenleaf, J.F., Kin n ic k , R.R., Bronk, J.T. & Bolander, M.E. (1996). Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther, 7, 1339-46.
    • Kimura, Y. & Y ana g im ac hi, R. (1995a). Development of normal mice from oocytes injected with secondary spermatocyte nuclei. Biol Reprod, 53, 855-62.
    • Kimura, Y. & Ya n a g im ac hi, R. (1995b). Intracytoplasmic sperm injection in the mouse. Biol Reprod, 52, 709-20.
    • Kimura, Y. & Y a na g im ac hi, R. (1 9 9 5 c). Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development, 121, 2397-405.
    • Kirichok, Y., Na va rr o , B. & C lapham , D.E. (2006). Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature, 439, 737-40.
    • Kirkman-Br o w n , J.C., Pu n t, E.L., Barratt, C.L. & Publicover, S.J. (2002). Zona pellucida and progesterone-induced Ca2+ signaling and acrosome reaction in human spermatozoa. J Androl, 23, 306-15.
    • Klein, R.M., W o lf, E.D., Wu, R. & Sa nfo r d , J.C. (1992). High-velocity microprojectiles for delivering nucleic acids into living cells. 1987. Biotechnology, 24, 384-6.
    • Kline, D. & Kline, J.T. (1992). Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol, 149, 80-9.
    • Knott, J.G., Kurokaw a, M., F isso r e, R.A., Schultz, R.M. & W illiams, C.J. (2005). Transgenic RNA interference reveals role for mouse sperm phospholipase Czeta in triggering Ca2+ oscillations during fertilization. Biol Reprod, 72, 992-6.
    • Ko no, T., Carroll, J., Sw a n n , K. & W hitting ham , D.G. (1995). Nuclei from fertilized mouse embryos have calcium-releasing activity. Development, 121, 1123-8.
    • Kouchi, Z., Fukami, K., S h ikano , T., O da, S., Nakamura, Y., Takenawa, T. & M iyazaki, S. (2004). Recombinant phospholipase Czeta has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. J Biol Chem, 279, 10408-12.
    • Krebs, J. & M ichalak, M. (2007). Calcium: A Matter of Life or Death: Elsevier.
    • Kretsinger, R.H. & No c k o lds, C.E. (1973). Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem, 248, 3313-26.
    • Kume, S., M u to , A., A r ug a , J., Nakagaw a, T., M ichikawa, T., Furuichi, T., Nakade, S., O kano, H. & M ikoshiba, K. (1993). The Xenopus IP3 receptor: structure, function, and localization in oocytes and eggs. Cell, 73, 555-70.
    • Kuo, R.C., Ba xter, G.T., T h o m pso n , S.H., Stricker, S.A., Patto n, C., Bonaventura, J. & E pel, D. (2000). NO is necessary and sufficient for egg activation at fertilization. Nature, 406, 633-6.
    • Kupker, W., D iedrich, K. & E d w ar ds, R.G. (1998). Principles of mammalian fertilization. Hum Reprod, 13 Suppl 1, 20-32.
    • Kuroda, K., It o , M., S hikano, T., Aw aji, T., Y o da, A., Takeuchi, H., Kinoshita, K. & M iyazaki, S. (2006). The role of X/Y linker region and N-terminal EFhand domain in nuclear translocation and Ca2+ oscillation-inducing activities of phospholipase Czeta, a mammalian egg-activating factor. J Biol Chem, 281, 27794-805.
    • Kyozuka, K., De g u c h i, R., M o h r i, T. & M iyazaki, S. (1998). Injection of sperm extract mimics spatiotemporal dynamics of Ca2+ responses and progression of meiosis at fertilization of ascidian oocytes. Development, 125, 4099-105.
    • La i, F.A., A n der so n , K., Ro u ssea u , E., Liu, Q.Y. & M eissner, G. (1988). Evidence for a Ca2+ channel within the ryanodine receptor complex from cardiac sarcoplasmic reticulum. Biochem Biophys Res Commun, 151, 441-9.
    • Lange, A., M ills, R.E., La n g e , C.J., Stew a r t, M., Devine, S.E. & C orbett, A.H. (2007). Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem, 282, 5101-5.
    • Larman, M.G., Sa u n d er s, C.M., Carroll, J., La i, F.A. & Sw a nn , K. (2004). Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCzeta. J Cell Sci, 117, 2513-21.
    • Laver, D.R., Ro d e n , L.D., A h er n , G.P., Ea g er, K.R., Junankar, P.R. & Dulhunty, A.F. (1995). Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. J MembrBiol, 147, 7-22.
    • Law rie, A., Brisken, A.F., F r ancis, S.E., C umberland, D.C., Crossman, D.C. & New m an, C.M. (2000). Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther, 7, 2023-7.
    • Lax, Y., R ubinstein, S. & Breitbart, H. (1994). Epidermal growth factor induces acrosomal exocytosis in bovine sperm. FEBS Lett, 339, 234-8.
    • Lee, H.C. & Aarhus, R. (1991). ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul, 2, 203-9.
    • Lee, H.C. & Aarhus, R. (1995). A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem, 270, 2152-7.
    • Lee, Y.H. & Pen g , C.A. (2005). Enhanced retroviral gene delivery in ultrasonic standing wave fields. Gene Ther, 12, 625-33.
    • Lemmon, M.A. (2003). Phosphoinositide recognition domains. Traffic, 4, 201-13.
    • Lemmon, M.A. & Fe r g u so n , K.M. (2000). Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J, 350 Pt 1, 1-18.
    • Lemmon, M.A., Ferg uso n, K.M., O 'Br ie n , R., S igler, P.B. & Schlessinger, J. (1995). Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A , 92, 10472-6.
    • Le w is , R.S. & C a h a la n , M.D. (1989). Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul, 1, 99-112.
    • Li, X., Z im a, A.V., S h e ik h , F., Bla tte r , L.A. & C h e n , J. (2005). Endothelin-1- induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice. Clrc Res, 96, 1274-81.
    • Liang, H.D., Lu, Q.L., X u e , S.A., Ha lliw ell, M., Ko d a m a , T., C o s g r o ve, D.O., S t a u s s , H.J., Pa r t r id g e , T.A. & Blo m ley, M.J. (2004). Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells. Ultrasound M ed Biol, 30, 1523-9.
    • Lim, D., Ky o zu k a , K., G r a g n a n ie llo , G., C a r afo li, E. & Santella, L. (2001). NAADP+ initiates the Ca2+ response during fertilization of starfish oocytes. Faseb J, 15, 2257-67.
    • Lin, Y., Ma h a n , K., La t h r o p , W .F., M y l e s , D.G. & P r im ako ff, P. (1994). A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg. J Cell Biol, 125, 1157-63.
    • Liou, J., F iva z, M., In o u e , T. & M e y e r , T. (2007). Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A, 104, 9301-6.
    • Liou, J., Kim , M.L., H e o , W .D., Jo n e s , J.T., M y e r s , J.W., Ferrell, J.E., Jr . & M e y e r , T. (2005). STIM is a Ca2+ sensor essential for Ca2+-storedepletion-triggered Ca2+ influx. CurrBiol, 15, 1235-41.
    • Liu, Z., Z h a n g , J., S h a r m a , M.R., Li, P., C h e n , S.R. & W a g en k n ec h t, T. (2001). Three-dimensional reconstruction of the recombinant type 3 ryanodine receptor and localization of its amino terminus. Proc Natl Acad Sci U S A , 98, 6104-9.
    • Loeb, J. (1921). Further observations on the production of parthenogenetic frogs. J Gen Physiol, 3, 539-545.
    • Ma c h a ty, Z„ Bo n k , A.J., Ku h h o lz e r , B. & P r a th e r , R.S. (2000). Porcine oocyte activation induced by a cytosolic sperm factor. Mol Reprod Dev, 57, 290-5.
    • Mackrill, J.J. (1999). Protein-protein interactions in intracellular Ca2+-release channel function. Biochem J, 337 ( Pt 3), 345-61.
    • Mackrill, J.J., C h a lliss, R.A., O 'C o n n ell D, A., La i, F.A. & Naho rski, S.R. (1997). Differential expression and regulation of ryanodine receptor and Ma ed a , N., Ka w a sa k i, T ., Na k a d e , S., Y o k o ta , N., T a g u c h i, T., Ka sai, M. & M iko shiba, K. (1991). Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem, 266, 1109-16.
    • Ma e s , K., M is sia en , L., D e S m e t , P., V a n lin g e n , S., Callew aert, G., Pa r y s , J.B. & D e S m e d t , H. (2000). Differential modulation of inositol 1,4,5- trisphosphate receptor type 1 and type 3 by ATP. Cell Calcium, 27, 257- 67.
    • Ma r an g o s, P., F itzHa r r is , G. & C a r r o ll, J. (2003). Ca2+ oscillations at fertilization in mammals are regulated by the formation of pronuclei. Development, 130, 1461-72.
    • Ma r c e t, B., C h a p p e , V ., D e lm a s, P., G o la , M. & V e r r ie r , B. (2003). Negative regulation of CFTR activity by extracellular ATP involves P2Y2 receptors in CFTR-expressing CHO cells. J MembrBiol, 194, 21-32.
    • Ma r c e t, B., C h a p p e , V ., D e lm a s , P. & V e r r ie r , B. (2004). Pharmacological and signaling properties of endogenous P2Y1 receptors in cystic fibrosis transmembrane conductance regulator-expressing Chinese hamster ovary cells. J Pharmacol Exp Ther, 309, 533-9.
    • Ma tsu d a , Y., S a eg u s a , H., Z o n g , S., N o d a , T. & T a n a b e, T. (2001). Mice lacking Ca(v)2.3 (alphalE) calcium channel exhibit hyperglycemia. Biochem Biophys Res Commun, 289, 791-5.
    • Ma tsu m o to , M., Na k ag aw a , T., In o u e , T., Na g a ta , E., T anaka, K., T ak an o , H., M in o w a , O., Ku n o , J., Sa k akibara , S., Y am a d a , M., Y o n es h im a , H., M iyaw aki, A., F u k u u c h i, Y., F u r u ic h i, T., O kano , H., M ikoshiba, K. & N o d a , T. (1996). Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature, 379,168-71.
    • Ma tts o n , M.P., Guo, Q., F u r u k a w a , K. & P e d e r s e n , W.A. (1998). Presenilins, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer's disease. J Neurochem, 7 0 ,1 -1 4 .
    • Mc E lr o y, W .D. (1947). The Energy Source for Bioluminescence in an Isolated System. Proc Natl Acad Sci U S A , 33, 342-5.
    • M eh lm ann, L.M., C h a tto p a d h y a y , A., Ca r p e n t e r , G. & Ja f fe , L.A. (2001). Evidence that phospholipase C from the sperm is not responsible for initiating Ca(2+) release at fertilization in mouse eggs. Dev Biol, 236,492- 501.
    • M ichel, A.D., C hessell, I.P., H ibell, A.D., S im on, J. & Humphrey, P.P. (1998). Identification and characterization of an endogenous P2X7 (P2Z) receptor in CHO-K1 cells. Br J Pharmacol, 125, 1194-201.
    • M ignen, O., T h o m pso n , J.L. & S huttlew orth, T.J. (2007). STIM1 regulates Ca2+ entry via arachidonate-regulated Ca2+-selective (ARC) channels without store depletion or translocation to the plasma membrane. J Physiol, 579, 703-15.
    • M inta, A., Ka o , J.P. & T s ie n , R.Y. (1989). Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem, 264,8171-8.
    • M issiaen, L., Raeym aekers, L., D o d e, L., Vanoevelen, J., Van Baelen, K., Parys, J.B., Callew aert, G., D e S m ed t, H., S egaert, S. & W uytack, F. (2004a). SPCA1 pumps and Hailey-Hailey disease. Biochem Biophys Res Commun, 322, 1204-13.
    • M issiaen, L., Van A c ker , K., Van Baelen, K., Raeymaekers, L., W uytack, F., Pa rys, J.B., De S m e d t, H., Vano evelen, J., Do d e, L., Rizzuto, R. & Callew aert, G. (2004b). Calcium release from the Golgi apparatus and the endoplasmic reticulum in HeLa cells stably expressing targeted aequorin to these compartments. Cell Calcium, 36, 479-87.
    • M iyazaki, S. & Ito , M. (2006). Calcium signals for egg activation in mammals. J Pharmacol Sci, 100, 545-52.
    • M iyazaki, S., S hirakaw a, H., Nakada, K. & Honda, Y. (1993). Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev Biol, 158, 62-78.
    • M iyazaki, S., Y uzaki, M., Nakada, K., Shirakawa, H., Nakanishi, S., Nakade, S. & M ikoshiba, K. (1992). Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science, 257, 251 -5.
    • Myles, D.G. & Prim akoff, P. (1997). W hy did the sperm cross the cumulus? To get to the oocyte. Functions of the sperm surface proteins PH-20 and fertilin in arriving at, and fusing with, the egg. Biol Reprod, 56, 320-7.
    • Nakahara, M., S him ozaw a, M., Nakamura, Y., Irino , Y., Morita, M., Kudo, Y. & Fukami, K. (2005). A novel phospholipase C, PLC(eta)2, is a neuronspecific isozyme. J Biol Chem, 280, 29128-34.
    • Nakano, Y., Shirakaw a, H., M itsuhashi, N., Kuwabara, Y. & M iyazaki, S. (1997). Spatiotemporal dynamics of intracellular calcium in the mouse egg injected with a spermatozoon. Mol Hum Reprod, 3, 1087-93.
    • Nak a sh im a , S., Ba n n o , Y., W a ta n a b e , T ., Na k am u ra , Y., M izu tan i, T., S akai, H., Z h a o , Y., S u g im o t o , Y. & N o z a w a , Y. (1995). Deletion and site-directed mutagenesis of EF-hand domain of phospholipase C-delta 1: effects on its activity. Biochem Biophys Res Commun, 211, 365-9.
    • N ishig a ki, T., W o o d , C.D., T a t s u , Y ., Y u m o to , N., F u r u ta , T., Elias, D., S hiba, K., Ba b a , S.A. & Da r s z o n , A. (2004). A sea urchin egg jelly peptide induces a cGMP-mediated decrease in sperm intracellular Ca(2+) before its increase. D ev Biol, 272, 376-88.
    • N is w e n d e r , K.D., Bla c k m a n , S.M., R o h d e , L., M a g n u s o n , M.A. & P is to n , D.W. (1995). Quantitative imaging of green fluorescent protein in cultured cells: comparison of microscopic techniques, use in fusion proteins and detection limits. J Microsc, 180,109-16.
    • N ix o n , G.F., M ig n e r y , G.A. & S o m l y o , A.V. (1994). Immunogold localization of inositol 1,4,5-trisphosphate receptors and characterization of ultrastructural features of the sarcoplasmic reticulum in phasic and tonic smooth muscle. J Muscle Res Cell Motil, 15, 682-700.
    • No m ik o s, M., Bl a y n e y , L.M., La r m a n , M.G., Ca m pb ell, K., R o s sb a c h , A., Sa u n d e r s , C.M., S w a n n , K. & La i, F.A. (2005). Role of phospholipase Czeta domains in Ca2+-dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and cytoplasmic Ca2+ oscillations. J Biol Chem, 280, 31011-8.
    • No m ik o s , M., M u l g r e w -N e s b it t , A., Pa lla v i, P., M ih a lyn e, G., Z a its e v a , I., Sw a n n , K., La i, F.A., M u r r a y , D. & M c La u g h lin , S. (2007). Binding of phosphoinositide-specific phospholipase C-zeta (PLC-zeta) to phospholipid membranes: potential role of an unstructured cluster of basic residues. J Biol Chem, 282, 16644-53.
    • N o rth , R.A. (2002). Molecular physiology of P2X receptors. Physiol Rev, 82, 1013-67.
    • No tto la , S.A., M a c c h ia r e l l i, G., Fa m ilia r i, G., S ta llo n e, T., S a th a n a n th a n , A.H. & M o t t a , P.M. (1998). Egg-sperm interactions in humans: ultrastructural aspects. Ital J Anat Embryol, 103, 85-101.
    • N u c c itelli, R. (1991). How do sperm activate eggs? Curr Top Dev Biol, 25,1-16.
    • O a n c e a , E. & M e y e r , T. (1998). Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell, 95, 307-18.
    • Oa n c e a , E. & M e y e r , T. (1996). Reversible desensitization of inositol trisphosphate-induced calcium release provides a mechanism for repetitive calcium spikes. J Biol Chem, 271, 17253-60.
    • O b e n au e r, J.C., C a n tle y , L.C. & Y a f fe , M.B. (2003). Scansite 2.0: Proteomewide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res, 31, 3635-41.
    • O b e r d o r f, J., W e b s te r , J.M., Z hu , C.C., Luo, S .G . & W o jcikiew icz, R.J. (1999). Down-regulation of types I, II and III inositol 1,4,5-trisphosphate receptors is mediated by the ubiquitin/proteasome pathway. Biochem J, 339 ( Pt 2), 453-61.
    • O g u r a , R., Ma t s u o , N., W a k o , N., T a n a k a , T., O n o , S. & H iratsuka , K. (2005). Multi-color luciferases as reporters for monitoring transient gene expression in higher plants. Plant Biotechnol., 22, 151-5.
    • O kada, M., F ujii, M., Y a m a g a , M., S u g im o to , H., Sadano, H., O sum i, T., Kamata, H., H ir a ta , H. & Y a g is a w a , H. (2002). Carboxyl-terminal basic amino acids in the X domain are essential for the nuclear import of phospholipase C deltal. Genes Cells, 7, 985-96.
    • Otsu , H., Ya m am o to , A., Ma e d a , N., M ikoshiba, K. & T ashiro, Y. (1990). Immunogold localization of inositol 1, 4, 5-trisphosphate (lnsP3) receptor in mouse cerebellar Purkinje cells using three monoclonal antibodies. Cell Struct Funct, 15, 163-73.
    • Ozil, J.P., Markoulaki, S., T o t h , S., Ma ts o n , S., Ba nr ezes, B., Kn o tt, J.G., S c h u ltz , R .M ., H u neau, D. & D u c ib e lla , T. (2005). Egg activation events are regulated by the duration of a sustained [Ca2+]cyt signal in the mouse. Dev Biol, 282, 39-54.
    • Ozil, J.P. & Sw a n n , K. (1995). Stimulation of repetitive calcium transients in mouse eggs. J Physiol, 483 ( Pt 2), 331-46.
    • Palermo, G., Jo r is , H., D e v r o e y , P. & Van Steirteg h em , A.C. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet, 340, 17-8.
    • P a rrin g to n , J., Jones, M.L., T u n w e ll, R., D e v a d e r, C., K atan , M. & Sw ann, K. (2002). Phospholipase C isoforms in mammalian spermatozoa: potential components of the sperm factor that causes Ca2+ release in eggs. Reproduction, 123, 31-9.
    • Pa r r in g to n , J., Sw a n n , K., S h e v c h e n k o , V.I., S e s a y , A.K. & La i, F.A. (1996). Calcium oscillations in mammalian eggs triggered by a soluble sperm protein. Nature, 379, 364-8.
    • Pa tel, S., Jo s e p h , S.K. & T h o m a s , A.P. (1999). Molecular properties of inositol I ,4,5-trisphosphate receptors. Cell Calcium, 25, 247-64.
    • Pa yrastre, B., M is s y , K., G iu r ia to , S., Bo d in , S., Plantavid, M. & G ratacap, M. (2001). Phosphoinositides: key players in cell signalling, in time and space. Cell Signal, 13, 377-87.
    • Pem berton, L.F. & Pa sc ha l, B.M. (2005). Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic, 6,187-98.
    • Perez, P.J., Ra m o s-F ran c o , J., F ill, M. & M ig ner y, G.A. (1997). Identification and functional reconstitution of the type 2 inositol 1,4,5-trisphosphate receptor from ventricular cardiac myocytes. J Biol Chem, 272, 23961-9.
    • Pinkerton, J.H., Me, K.D., A d a m s , E.C. & H ertig , A.T. (1961). Development of the human o v a ry-a study using histochemical technics. Obstet Gynecol, 18,152-81.
    • Pinton, P., Po zza n , T. & R izzu to , R. (1998). The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. Embo J, 17, 5298-308.
    • Plank, C., A n to n , M., R u d o lp h , C., Ro senecker, J. & Kro tz, F. (2003). Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin Biol Ther, 3, 745-58.
    • Po enie, M., A lder to n , J., Stein h a r d t, R. & T sie n , R. (1986). Calcium rises abruptly and briefly throughout the cell at the onset of anaphase. Science, 233, 886-9.
    • Po enie, M., A ld er to n , J., T s ie n , R.Y. & Steinh a rd t, R.A. (1985). Changes of free calcium levels with stages of the cell division cycle. Nature, 315,147- 9.
    • POGWIZD, S.M., SCHLOTTHAUER, K., Ll, L., YUAN, W . & BERS, D.M. (2001). Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res, 88, 1159-67.
    • Po r ter , T.R., X ie , F., Kr ic sfeld , A. & Kilzer, K. (1995). Noninvasive identification of acute myocardial ischemia and reperfusion with contrast ultrasound using intravenous perfluoropropane-exposed sonicated dextrose albumin. J Am Coll Cardiol, 26, 33-40.
    • Potier , M. & T rebak, M. (2008). New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch, 457,405-15.
    • Prasher, D.C., Ec kenr o d e, V.K., W ard, W .W ., Prendergast, F.G. & Cormier, M.J. (1992). Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 111, 229-33.
    • Puck, T.T., C ieciura, S.J. & Ro binso n, A. (1958). Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J Exp Med, 108, 945-56.
    • Putney, J.W., J r. & Bird, G.S. (1993). The inositol phosphate-calcium signaling system in nonexcitable cells. EndocrRev, 14, 610-31.
    • Ratan, R.R., S helanski, M.L. & Ma xfield, F.R. (1986). Transition from metaphase to anaphase is accompanied by local changes in cytoplasmic free calcium in Pt K2 kidney epithelial cells. Proc Natl Acad Sci U S A , 83, 5136-40.
    • Rebecchi, M.J. & Pentyala, S.N. (2000). Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev, 80,1291-335.
    • Reijo, R., Le e , T.Y., Sa lo , P., A lagappan, R., Bro w n, L.G., Rosenberg, M., Ro zen , S., Ja ffe , T., Str a u s , D., Hovatta, O. & et al. (1995). Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet, 10, 383-93.
    • Rhee, S.G. (2001). Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem, 70, 281-312.
    • Rhee, S.G. & Ba e , Y.S. (1997). Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem, 272,15045-8.
    • Rice, A., Pa rr in g to n , J., Jo n e s , K.T. & Sw a nn , K. (2000). Mammalian sperm contain a Ca(2+)-sensitive phospholipase C activity that can generate lnsP(3) from PIP(2) associated with intracellular organelles. Dev Biol, 228, 125-35.
    • Ridgw ay, E.B., G ilkey, J.C. & Ja ffe , L.F. (1977). Free calcium increases explosively in activating medaka eggs. Proc Natl Acad Sci U S A , 74, 623- 7.
    • Robb-G aspers, L.D., R u tter , G.A., Burnett, P., Hajnoczky, G., Denton, R.M. & T hom as, A.P. (1998). Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. Biochim Biophys Acta, 1366, 17-32.
    • Ross, C.A., M eldolesi, J., M ilner, T.A., Sato h, T., S upattapone, S. & Snyder, S.H. (1989). Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature, 339,468-70.
    • Runft, L.L., Ja ffe , L.A. & M ehlm ann, L.M. (2002). Egg activation at fertilization: where it all begins. D ev Biol, 245, 237-54.
    • Russa, A.D., Maesaw a, C. & Sa to h , Y. (2009). Spontaneous [Ca2+]i oscillations in G1/S phase-synchronized cells. J Electron Microsc (Tokyo), 58, 321-9.
    • Sakurai, A., O da, S., Kuw abara, Y. & M iyazaki, S. (1999). Fertilization, embryonic development, and offspring from mouse eggs injected with round spermatids combined with Ca2+ oscillation-inducing sperm factor. Mol Hum Reprod, 5, 132-8.
    • Sala New by, G.B., Kendall, J.M., Jo n es, H., Taylor, K.M., Badminton, M.N., Llew ellyn, D.H. & Campbell, A.K. (1999). Bioluminescent and chemiluminescent indicators for molecular signalling and function in living cells. In: Fluorescent Probes for Biological Function. London: Academic Press.
    • Santella, L., Kyozuka, K., G enazzani, A.A., De R iso, L. & Carafoli, E. (2000). Nicotinic acid adenine dinucleotide phosphate-induced Ca(2+) release. Interactions among distinct Ca(2+) mobilizing mechanisms in starfish oocytes. J Biol Chem, 275, 8301-6.
    • Santella, L., Lim, D. & M o c c ia , F. (2004). Calcium and fertilization: the beginning of life. Trends Biochem Sci, 29,400-8.
    • Sasagawa, I. & Y anagim achi, R. (1996). Comparison of methods for activating mouse oocytes for spermatid nucleus transfer. Zygote, 4, 269-74.
    • Sasaki, T., Sasaki, J., Sakai, T., Takasuga, S. & S uzuki, A. (2007). The physiology of phosphoinositides. Biol Pharm Bull, 3 0 ,1599-604.
    • Sato, Y., M iyazaki, S., S hikano, T., M itsuhashi, N., Takeuchi, H., M ikoshiba, K. & Kuw abara, Y. (1998). Adenophostin, a potent agonist of the inositol 1,4,5-trisphosphate receptor, is useful for fertilization of mouse oocytes injected with round spermatids leading to normal offspring. Biol Reprod, 58, 867-73.
    • Saunders, C.M., Larm an, M.G., Parr in g to n , J., Cox, L.J., Royse, J., Blayney, L.M., Sw a n n , K. & La i, F.A. (2002). PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development, 129, 3533-44.
    • Schultz, R.M. & Ko p f , G.S. (1995). Molecular basis of mammalian egg activation. Curr Top D ev Biol, 30, 21-62.
    • Selinger, Z., Do za , Y.N. & M in k e , B. (1993). Mechanisms and genetics of photoreceptors desensitization in Drosophila flies. Biochim Biophys Acta, 1179, 283-99.
    • Sette, C .f Bevilacqua, A., Bia nchini, A., Mang ia, F., G eremia, R. & Rossi, P. (1997). Parthenogenetic activation of mouse eggs by microinjection of a truncated c-kit tyrosine kinase present in spermatozoa. Development, 124, 2267-74.
    • Stahelin, R.V. & C h o , W . (2001). Roles of calcium ions in the membrane binding of C2 domains. Biochem J, 359,679-85.
    • Steinhardt, R. (2006). Three stages (and a dividend) on my personal road to Ca2+ activation at fertilization. Semin Cell Dev Biol, 17, 226-8.
    • Steinhardt, R.A. & Epel, D. (1974a). Activation of sea-urchin eggs by a calcium ionophore. Proc Natl Acad Sci U S A, 71,1915-9.
    • Steinhardt, R.A., Ep el, D., Carroll, E.J., Jr . & Y anagimachi, R. (1974b). Is calcium ionophore a universal activator for unfertilised eggs? Nature, 252, 41-3.
    • Stephens, L., W illiams, R. & Ha w kins, P. (2005). Phosphoinositide 3-kinases as drug targets in cancer. Curr Opin Pharmacol, 5, 357-65.
    • Stricker, S.A. (1999). Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol, 2 1 1 ,1 5 7 -7 6 .
    • Taylor, C.W., G enazzani, A.A. & Mo r r is , S.A. (1999). Expression of inositol trisphosphate receptors. Cell Calcium, 26, 237-51.
    • T esarik, J., Pilka, L., Drahorad, J., C echova, D. & V eselsky, L. (1988). The role of cumulus cell-secreted proteins in the development of human sperm fertilizing ability: implication in IVF. Hum Reprod, 3,129-32.
    • T esarik, J., Sousa, M. & T esta rt, J. (1994). Human oocyte activation after intracytoplasmic sperm injection. Hum Reprod, 9, 511-8.
    • T homas, D., T o vey, S.C., C ollins, T.J., Bootm an, M.D., Berridge, M.J. & Lipp, P. (2000). A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium, 28, 213-23.
    • T hrow er, E.C., Ha g ar , R.E. & Ehrlich, B.E. (2001). Regulation of lns(1,4,5)P3 receptor isoforms by endogenous modulators. Trends Pharmacol Sci, 22, 580-6.
    • T osti, E., Palumbo, A. & Da le, B. (1993). Inositol tri-phosphate inhuman and ascidian spermatozoa. Mol Reprod Dev, 35, 52-6.
    • T ow nley, I.K., Roux, M.M. & Fo ltz, K.R. (2006). Signal transduction at fertilization: the Ca2+ release pathway in echinoderms and other invertebrate deuterostomes. Semin Cell Dev Biol, 17, 293-302.
    • T ran, E.J. & W ente, S.R. (2006). Dynamic nuclear pore complexes: life on the edge. Cell, 125, 1041-53.
    • T se, A., T s e , F.W., A lm ers, W . & H ille, B. (1993). Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes. Science, 260, 82-4.
    • T urner, P.R., S heetz, M.P. & Ja ffe , L.A. (1984). Fertilization increases the polyphosphoinositide content of sea urchin eggs. Nature, 310,414-5.
    • Unger, E.C., H ersh , E., V ann an , M. & Mc C reery, T. (2001). Gene delivery using ultrasound contrast agents. Echocardiography, 18,355-61.
    • Van Baelen, K., Do d e , L., Va no evelen , J., Callewaert, G., De Smedt, H., M issiaen, L., Pa r ys, J.B., Raeymaekers, L. & W uytack, F. (2004). The Ca2+/Mn2+ pumps in the Golgi apparatus. Biochim Biophys Acta, 1742, 103-12.
    • Vanhaesebroeck, B., A li, K., Bilancio, A., G eering, B. & Foukas, L.C. (2005). Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci, 30, 194-204.
    • Vassilev, P.M., G u o , L., C h en , X.Z., S egal, Y., Pen g , J.B., Basora, N., Babakhanlou, H., C r u g er , G., Kanazirska, M., Y e , C., Brow n, E.M., Hedig er, M.A. & Z h o u , J. (2001). Polycystin-2 is a novel cation channel implicated in defective intracellular Ca(2+) homeostasis in polycystic kidney disease. Biochem Biophys Res Commun, 282, 341-50.
    • Vasudevan, S.R., Ga lio n e, A. & C hurchill, G.C. (2008). Sperm express a Ca2+- regulated NAADP synthase. Biochem J, 411, 63-70.
    • von Kugelgen, I. & W etter , A. (2000). Molecular pharmacology of P2Yreceptors. Naunyn Schmiedebergs Arch Pharmacol, 362, 310-23.
    • Z h an g , G., G u r t u , V . & Ka in , S .R . (1996). An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys R es Commun, 2 2 7 ,707-11.
    • Z h ang , Y. & Yu, L.C. (2008). Single-cell microinjection technology in cell biology. Bioessays, 30, 606-10.
    • Z h u , C.C., F u r u ic h i, T., M ik o sh ib a , K. & W ojc ik iew icz, R.J. (1999). Inositol 1,4,5- trisphosphate receptor down-regulation is activated directly by inositol 1,4,5-trisphosphate binding. Studies with binding-defective mutant receptors. J Biol Chem, 274, 3476-84.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article