LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Skinner, T.D.; Wang, M.; Hindmarch, A.T.; Rushforth, A.W.; Irvine, A.C.; Heiss, D.; Kurebayashi, H.; Ferguson, A.J. (2014)
Publisher: American Institute of Physics
Types: Article
Subjects: Condensed Matter - Mesoscale and Nanoscale Physics

Classified by OpenAIRE into

arxiv: Condensed Matter::Mesoscopic Systems and Quantum Hall Effect, Astrophysics::Earth and Planetary Astrophysics, Condensed Matter::Materials Science
Identifiers:doi:10.1063/1.4864399
Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven ferromagnetic resonance technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, was analysed to determine the symmetries and relative magnitudes of the spin-orbit torques. Both anti-damping (Slonczewski) and field-like torques were observed. As the ferromagnet thickness was reduced from 3 to 1 nm, the sign of the sum of the field-like torque and Oersted torque reversed. This observation is consistent with the emergence of a Rashba spin orbit torque in ultra-thin bilayers.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1J. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
    • 2J. Sinova, D. Culcer, Q. Niu, N. Sinitsyn, T. Jungwirth, and A.
    • MacDonald, Phys. Rev. Lett. 92, 126603 (2004).
    • 3Y. Kato, R. Myers, A. Gossard, and D. Awschalom, Science 306, 1910 (2004).
    • 4J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett.
    • 5L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett.
    • 6L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336, 555 (2012).
    • 7L. Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 109, 096602 (2012).
    • 8J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
    • 9L. Berger, Phys. Rev. B 54, 9353 (1996).
    • 10S. Zhang, P. M. Levy, and A. Fert, Phys. Rev. Lett. 88, 236601 (2002).
    • 11M. A. Zimmler, B. O€zyilmaz, W. Chen, A. D. Kent, J. Z. Sun, M. J. Rooks, and R. H. Koch, Phys. Rev. B 70, 184438 (2004).
    • 12J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman, and D. C. Ralph, Nat. Phys. 4, 67 (2008).
    • 13A. Manchon and S. Zhang, Phys. Rev. B 78, 212405 (2008).
    • 14K. Obata and G. Tatara, Phys. Rev. B 77, 214429 (2008).
    • 15A. Manchon and S. Zhang, Phys. Rev. B 79, 094422 (2009).
    • 16I. M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, and P. Gambardella, Nature Mater. 9, 230 (2010).
    • 17I. M. Miron, T. Moore, H. Szambolics, L. D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl et al., Nature Mater. 10, 419 (2011).
    • 18U. H. Pi, K. Won Kim, J. Y. Bae, S. C. Lee, Y. J. Cho, K. S. Kim, and S. Seo, Appl. Phys. Lett. 97, 162507 (2010).
    • 19T. Suzuki, S. Fukami, N. Ishiwata, M. Yamanouchi, S. Ikeda, N. Kasai, and H. Ohno, Appl. Phys. Lett. 98, 142505 (2011).
    • 20I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Nature 476, 189 (2011).
    • 21K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blugel, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, Nat. Nanotechnol. 8, 587 (2013).
    • 22H. Kurebayashi, J. Sinova, D. Fang, A. Irvine, J. Wunderlich, V. Novak, R. Campion, B. Gallagher, E. Vehstedt, L. Zarbo et al., e-print arXiv:1306.1893.
    • 23D. A. Pesin and A. H. MacDonald, Phys. Rev. B 86, 014416 (2012).
    • 24X. Wang and A. Manchon, Phys. Rev. Lett. 108, 117201 (2012).
    • 25J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, T. Suzuki, S. Mitani, and H. Ohno, Nature Mater. 12, 240 (2012).
    • 26X. Fan, J. Wu, Y. Chen, M. J. Jerry, H. Zhang, and J. Q. Xiao, Nat. Commun. 4, 1799 (2013).
    • 27D. Fang, H. Kurebayashi, J. Wunderlich, K. Vy`borny`, L. Z^arbo, R. Campion, A. Casiraghi, B. Gallagher, T. Jungwirth, and A. Ferguson, Nat. Nanotechnol. 6, 413 (2011).
    • 28D. Fang, T. Skinner, H. Kurebayashi, R. Campion, B. Gallagher, and A. Ferguson, Appl. Phys. Lett. 101, 182402 (2012).
    • 29K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa, M. Matsuo, S. Maekawa, and E. Saitoh, J. Appl. Phys. 109, 103913 (2011).
    • 30T. D. Skinner, H. Kurebayashi, D. Fang, D. Heiss, A. C. Irvine, A. T. Hindmarch, M. Wang, A. W. Rushforth, and A. J. Ferguson, Appl. Phys. Lett. 102, 072401 (2013).
    • 31We note that a value of ksf ¼ 1 nm for platinum is much smaller than in most of the literature. However, other studies in bilayers using ferromagnetic magnetic resonance have found similar values, e.g., 1.4 nm in L. Liu, R. A. Buhrman, and D. C. Ralph, e-print arXiv:1111.3702v3 and 1.2 nm in W. Zhang, V. Vlaminck, J. E. Pearson, R. Divan, S. D. Bader, and A. Hoffmann, Appl. Phys. Lett. 103, 242414 (2013).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article