LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wallis, S.A.
Languages: English
Types: Doctoral thesis
Subjects:
Influential models of edge detection have generally supposed that an edge is detected at peaks in the 1st derivative of the luminance profile, or at zero-crossings in the 2nd derivative. However, when presented with blurred triangle-wave images, observers consistently marked edges not at these locations, but at peaks in the 3rd derivative. This new phenomenon, termed ‘Mach edges’ persisted when a luminance ramp was added to the blurred triangle-wave. Modelling of these Mach edge detection data required the addition of a physiologically plausible filter, prior to the 3rd derivative computation. A viable alternative model was examined, on the basis of data obtained with short-duration, high spatial-frequency stimuli. Detection and feature-making methods were used to examine the perception of Mach bands in an image set that spanned a range of Mach band detectabilities. A scale-space model that computed edge and bar features in parallel provided a better fit to the data than 4 competing models that combined information across scale in a different manner, or computed edge or bar features at a single scale. The perception of luminance bars was examined in 2 experiments. Data for one image-set suggested a simple rule for perception of a small Gaussian bar on a larger inverted Gaussian bar background. In previous research, discriminability (d’) has typically been reported to be a power function of contrast, where the exponent (p) is 2 to 3. However, using bar, grating, and Gaussian edge stimuli, with several methodologies, values of p were obtained that ranged from 1 to 1.7 across 6 experiments. This novel finding was explained by appealing to low stimulus uncertainty, or a near-linear transducer.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article