Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Portius, P.; Davis, M.; Campbell, R.; Hartl, F.; Zeng, Q.; Meijer, A.J.H.M.; Towrie, M. (2013)
Publisher: American Chemical Society
Languages: English
Types: Article
p-(Dimethylamino)phenyl pentazole, DMAP-N5 (DMAP = Me2N–C6H4), was characterized by picosecond transient infrared spectroscopy and infrared spectroelectrochemistry. Femtosecond laser excitation at 310 or 330 nm produces the DMAP-N5 (S1) excited state, part of which returns to the ground state (τ = 82 ± 4 ps), while DMAP-N and DMAP-N3 (S0) are generated as double and single N2-loss photoproducts with η ≈ 0.14. The lifetime of DMAP-N5 (S1) is temperature and solvent dependent. [DMAP-N3]+ is produced from DMAP-N5 in a quasireversible, one-electron oxidation process (E1/2 = +0.67 V). Control experiments with DMAP-N3 support the findings. DFT B3LYP/6-311G** calculations were used to identify DMAP-N5 (S1), DMAP-N3+, and DMAP-N in the infrared spectra. Both DMAP-N5 (S1) and [DMAP-N5]+ have a weakened N5 ring structure.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Steinhauser, G.; Klapötke, T. M. "Green" Pyrotechnics: A Chemists' Challenge. Angew. Chem. Int. Ed. 2008, 47, 2-20.
    • (2) Portius, P.; Fowler, P. W.; Adams, H.; Todorova, T. Z. Experimental and Theoretical Characterization of the Hexaazidophosphate(V) Ion. Inorg. Chem. 2008, 47, 12004-12009.
    • (3) Müller, J. Azides of the Heavier Group 13 Elements. Coord. Chem. Rev. 2002, 235, 105- 119.
    • (4) Portius, P.; Davis, M. Recent Developments in the Chemistry of Covalent Maingroup Azides. Coord. Chem. Rev. 2013, 257, 1011-1025.
    • (5) Banert, K.; Joo, Y.-H.; Rüffer, T.; Walfort, B.; Lang, H. The Exciting Chemistry of Tetraazidomethane. Angew. Chem. Int. Ed. 2007, 46, 1168-1171.
    • (6) Singh, R. P.; Verma, R. D.; Meshri, D. T.; Shreeve, J. M. Energetic Nitrogen-Rich Salts and Ionic Liquids. Angew. Chem. Int. Ed. 2006, 45, 3584-3601.
    • (7) Stierstorfer, J.; Tarantik, K. R.; Klapötke, T. M. New Energetic Materials: Functionalized 1-Ethyl-5-aminotetrazoles and 1-Ethyl-5-nitriminotetrazoles. Chem. Eur. J. 2009, 15, 5775- 5792.
    • (8) Tang, Y.; Yang, H.; Bo Wu, X. J.; Lu, C.; Cheng, G. Synthesis and Characterization of a Stable, Catenated N11 Energetic Salt. Angew. Chem. Int. Ed. 2013, 52, 4875-4877. (9) Köhler, J.; Meyer, R. Explosives 1993, Wiley-VCH: Weinheim, Germany, 4th ed.
    • (10) Tornieporth-Oetting, I. C.; Klapötke, T. M. Covalent Inorganic Azides. Angew. Chem. Int. Ed. Eng. 1995, 34, 511-520.
    • (11) Huynh, M. H. V.; Coburn, M. D.; Meyer, T. J.; Wetzler, M. Green Primary Explosives: 5- Nitrotetrazolato-N2-ferrate Hierarchies. Proc. Natl. Acad. Sci. USA 2006, 103, 10322-10327.
    • (12) Haiges, R.; Schneider, S.; Schroer, T.; Christe, K. O. High-Energy-Density Materials: Synthesis and Characterization of N5 [P(N3)6] , N5+[B(N3)4] , N5+[HF2] ×nHF, N5+[BF4] , N5+[PF6] , and N5+[SO3F] . Angew. Chem. Int. Ed. 2004, 43, 4919-4924.
    • (13) Cacace, F.; de Petris, G.; Troiani, A. Experimental Detection of Tetranitrogen. Science 2002, 295, 480-481.
    • (14) Cacace, F. From N2 and O2 to N4 and O4: Pneumatic Chemistry in the 21st Century, Chem. Eur. J. 2002, 8, 3838-3847.
    • (16) Schroer, T.; Haiges, R.; Schneider, S.; Christe, K. O. The Race for the First Generation of the Pentazolate Anion in Solution is Far From Over. Chem. Commun. 2005, 1607-1609.
    • (17) Östmark, H.; Wallin, S.; Brinck, T.; Carlquist, P.; Claridge, R.; Hedlund, E.; Yudina, L. Detection of Pentazolate Anion (cyclo-N5 ) from Laser Ionization and Decomposition of Solid pDimethylaminophenylpentazole. Chem. Phys. Lett. 2003, 379, 539-546.
    • (18) Vij, A.; Pavlovich, J. G.; Wilson, W. W.; Vij, V.; Christe, K. O. Experimental Detection of the Pentaazacyclopentadienide (Pentazolate) Anion, cyclo-N5. Angew. Chem. Int. Ed. 2002, 41, 3051-3054.
    • (19) Straka, M.; Pyykko, P. One Metal and Forty Nitrogens. Ab Initio Predictions for Possible New High-Energy Pentazolides. Inorg. Chem. 2003, 42, 8241-8249.
    • (21) Kobrsi, I.; Zheng, W.; Knox, J. E.; Heeg, M. J.; Schlegel, H. B.; Winter, C. H. Experimental and Theoretical Study of the Coordination of 1,2,4-Triazolato, Tetrazolato, and Pentazolato Ligands to the [K(18-crown-6)]+ Fragment. Inorg. Chem. 2006, 45, 8700-8710.
    • (22) Frunzke, J.; Lein, M.; Frenking, G. Structures, Metal-Ligand Bond Strength, and Bonding Analysis of Ferrocene Derivatives with Group 15 Heteroligands Fe( 5-E5)2 and FeCp( 5-E5) (E = N, P, As, Sb). A Theoretical Study. Organometallics 2002, 21, 3351-3359.
    • (23) Tsipis, A. C.; Chaviara, A. T. Structure, Energetics, and Bonding of First Row Transition Metal Pentazolato Complexes: A DFT study. Inorg. Chem. 2004, 43, 1273-1286.
    • (24) Cheng, L. P.; Li, S.; Li, Q. S. Polynitrogen Clusters Containing Five-Membered Rings. Int. J. Quantum Chem. 2004, 97, 933-943.
    • (25) Belau, L.; Haas, Y.; Zilberg, S. Formation of the cyclo-Pentazolate N5 Anion by HighEnergy Dissociation of Phenylpentazole Anions. J. Phys. Chem. A 2004, 108, 11715-11720.
    • (26) Ugi, I. Five-Membered Rings with Two or More Nitrogen Atoms, Pentazoles. Compr. Heterocycl. Chem. 1984, 5, 839-845.
    • (27) Biesemeier, F.; Müller, U.; Massa, W. Die Kristalstruktur von Phenylpentazol, C6H5N5. Z. Anorg. Allg. Chem. 2002, 628, 1933-1934.
    • (28) Wallis, J. D.; Dunitz, J. D. An All-Nitrogen Aromatic Ring System: Structural Study of 4- Dimethylaminophenylpentazole. J. Chem. Soc. Chem. Comm. 1983, 910.-911 (37) Gritsan, N. P.; Platz, M. S. Kinetics, Spectroscopy, and Computational Chemistry of Arylnitrenes. Chem. Rev. 2006, 106, 3844-3867.
    • (38) Burdzinski, G. T.; Middleton, C. T.; Gustafson, T. L.; Platz, M. S. Solution Phase Isomerization of Vibrationally Excited Singlet Nitrenes to Vibrationally Excited 1,2- Didehydroazepine. J. Am. Chem. Soc. 2006, 128, 14804-14805.
    • (39) Tsunoda, T.; Yamaoka, T.; Ikari, K. Photosensitivity of Aromatic Azide Compounds. I. Photosensitivity of Monosubstituted Phenyl Azides. Kogyo Kagaku Zasshi 1969, 72, 156-162.
    • (40) Katritzky, A. R.; Keogh, H. J.; Ohlenrott, S.; Topsom, R. D. Infrared Intensities as a Quantitative Measure of Intramolecular Interactions. XIV. Groups with Donor-Acceptor Character. J. Am. Chem. Soc. 1970, 92, 6855-6860.
    • (41) Hall, J. H.; Fargher, J. M.; Gisler, M. R. Substituent Effects on Spin Delocalization in Triplet Phenylnitrenes. 1. Para-Substituted Phenylnitrenes. J. Am. Chem. Soc. 1978, 100, 2029- 2034.
    • (42) Kobayashi, T.; Ohtani, H.; Suzuki, K.; Yamaoka, T. Picosecond and Nanosecond Laser Photolyses of p-(Dimethylamino)phenyl Azide in Solution. J. Phys. Chem. 1985, 89, 776-779.
    • (59) Greetham, G.; Burgos, P.; Cao, Q. A.; Clark, I. P.; Codd, P. S.; Farrow, R. C.; George, M. W.; Kogimtzis, M.; Matousek, P.; Parker, A. W.; et al. ULTRA: A Unique Instrument for TimeResolved Spectroscopy. Appl. Spectrosc. 2010, 64, 1311-1319.
    • (61) Mahabiersing, T.; Luyten, H.; Nieuwendam, R. C.; Hartl, F. Synthesis, Spectroscopy and Spectroelectrochemistry of Chlorocarbonyl{1,2-bis[(2,6-diisopropylphenyl)imino]- acenaphthene- -N,N'}rhodium(I). Collect. Czech. Chem. Commun. 2003, 68, 1687-1709.
    • (62) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; M. A. Robb, J.; Cheeseman, R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, revision A.2; Gaussian, Inc.: Wallingford, CT, 2009 (Full author list is shown in the Supporting Information).
    • (68) Mennucci, B.; Tomasi, J. Continuum Solvation Models: A New Approach to the Problem of Solute's Charge Distribution and Cavity Boundaries. J. Chem. Phys. 1997, 106, 5151-5158.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article