LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lishchuk, SV; Ettelaie, R (2016)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects:
Deformation of a spherical droplet or bubble, containing a pair of particles on its surface is considered when equal but opposite forces are applied to the particles. The particles are placed opposite each other thus providing a symmetrical problem which is more amenable to analytical treatment. We extend our previous calculations, concerning such arrangements with constant contact angles, to situations where now it is the contact line that is pinned on the surface of the particles. The force-displacement curves are calculated as the particles are pulled apart and was found to be linear for small displacements. However, it is also found that the "Hookean constant" for the pinned contact line problem is different to one derived for systems with a constant contact angle, being larger if the pinned line is at the equator of the particles.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article