Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Navaraj, William Taube; Yadav, Beerendra Kumar; Kumar, Anil (2016)
Publisher: Springer Verlag
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Space Physics, Astrophysics::Solar and Stellar Astrophysics
Optoelectronic two dimensional technology computer aided design simulation of unconstrained four terminal hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) tandem solar cells have been carried out. Tandem solar cell approach is one of the promising approaches to achieve high efficiency solar cell by reducing lattice thermalization loss, but needs extensive optimization as the efficiency depends on a number of parameters. The optoelectronic properties of various materials involved have been taken into consideration and a range of parameters such as top anti reflection coating (ARC) thickness, bottom ARC thickness, a-Si:H solar cell thickness, optical connecting layer thickness, a-Si:H solar cell doping, crystalline silicon solar cells doping etc. have been optimized. The optimization resulted in a simulated efficiency of 19.29 % for an untextured planar solar cell.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 44). Progress in Photovoltaics: Research and Applications 22(7), 701-710 (2014). doi:10.1002/pip.2525
    • 2. Green, M.A.: The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in Photovoltaics: Research and Applications 17(3), 183-189 (2009). doi:10.1002/pip.892
    • 3. ATLAS User Manual. (2015).
    • 4. Shaw, J.G., Hack, M.: An analytic model for calculating trapped charge in amorphous silicon. Journal of Applied Physics 64(9), 4562 (1988). doi:10.1063/1.341258
    • 5. Yamamoto, K., Nakajima, A., Yoshimi, M., Sawada, T., Fukuda, S., Suezaki, T., Ichikawa, M., Koi, Y., Goto, M., Meguro, T., Matsuda, T., Kondo, M., Sasaki, T., Tawada, Y.: A high efficiency thin film silicon solar cell and module. Solar Energy 77(6), 939-949 (2004). doi:10.1016/j.solener.2004.08.028
    • 6. Ltd., T.E.: New Record-Breaking PV Module Efficiency has been achieved. (2014).
    • 7. Perez-Wurfl, I., Ma, L., Lin, D., Hao, X., Green, M.A., Conibeer, G.: Silicon nanocrystals in an oxide matrix for thin film solar cells with 492mV open circuit voltage. Solar Energy Materials and Solar Cells 100, 65-68 (2012). doi:10.1016/j.solmat.2011.02.029
    • 8. Noufi, R., Young, D.L., Coutts, T.J., Gessert, T., Ward, J.S., Duda, A., Wu, X., Romero, M., Dhere, R., Abu Shama, J.: Toward a 25%-efficient polycrystalline thin-film tandem solar cell: practical issues. In: Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, 18-18 May 2003 2003, pp. 12-14 Vol.11
    • 9. Brown, A.S., Green, M.A.: Detailed balance limit for the series constrained two terminal tandem solar cell. Physica E: Low-dimensional Systems and Nanostructures 14(1-2), 96-100 (2002). doi:http://dx.doi.org/10.1016/S1386- 9477(02)00364-8
    • 10. Matsumoto, Y., Miyagi, K., Takakura, H., Okamoto, H., Hamakawa, Y.: a-Si/poly-Si two- and four-terminal tandem type solar cells. In: Photovoltaic Specialists Conference, 1990., Conference Record of the Twenty First IEEE, 21-25 May 1990 1990, pp. 1420-1425 vol.1422
    • 11. Alì, G., Butera, F., Rotundo, N.: Geometrical and physical optimization of a photovoltaic cell by means of a genetic algorithm. J Comput Electron 13(1), 323-328 (2014). doi:10.1007/s10825-013-0533-0
    • 12. Piprek, J.: Semiconductor optoelectronic devices: introduction to physics and simulation. Academic Press, (2003)
    • 13. Guha, S., Yang, J.: High-efficiency amorphous silicon alloy based solar cells and modules. (2005).
    • 14. Murayama, K.: Hopping and radiative recombination at localized band tail states in hydro- genated amorphous silicon. physica status solidi (c) 8(1), 198-204 (2011). doi:10.1002/pssc.201000558
    • 15. Nguyen, H.T., Baker-Finch, S.C., Macdonald, D.: Temperature dependence of the radiative recombination coefficient in crystalline silicon from spectral photoluminescence. Applied Physics Letters 104(11), 112105 (2014). doi:10.1063/1.4869295
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article