LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aad, G.; Caron, S.; Croft, V.; Groot, N. de; Filthaut, F.; Galea, C.; Klok, P.F.; König, A.C; Nektarijevic, S.; Salvucci, A.; Strubig, A.; et al. (2015)
Publisher: Springer
Types: Article
top neutralino, Pair Production, p p --> 2squark anything, stop --> bottom chargino, sbottom --> bottom neutralino, 530, mass: lower limit [sbottom], High Energy Physics - Experiment, Settore FIS/04 - Fisica Nucleare e Subnucleare, pair production [sbottom], decay [squark], CERN LHC Coll, minimal supersymmetric standard model, mass: lower limit [stop], missing-energy [transverse momentum], experimental results, Subatomär fysik, Third-Generation Squarks, 7000 GeV-cms8000 GeV-cms, bottom [jet], parameter space [supersymmetry], Science & Technology, Physics and Astronomy (miscellaneous); LHC; ATLAS: supersymmetry, Settore FIS/01 - Fisica Sperimentale, Large Hadron Collider, colliding beams [p p], sensitivity, 530 Physics, ATLAS; direct pair production; third-generation squarks; Large Hadron Collider, pair production [stop]--> Subjects: Regular Article - Experimental Physics, scattering [p p], Subatomic Physics, cascade decay [stop], Particle Physics - Experiment, ATLAS, stop --> top neutralino, Pair Production, p p --> 2squark anything, stop --> bottom chargino, sbottom --> bottom neutralino, 530, mass: lower limit [sbottom], High Energy Physics - Experiment, Settore FIS/04 - Fisica Nucleare e Subnucleare, pair production [sbottom], decay [squark], CERN LHC Coll, minimal supersymmetric standard model, mass: lower limit [stop], missing-energy [transverse momentum], experimental results, Subatomär fysik, Third-Generation Squarks, 7000 GeV-cms8000 GeV-cms, bottom [jet], parameter space [supersymmetry], Science & Technology, Physics and Astronomy (miscellaneous); LHC; ATLAS: supersymmetry, Settore FIS/01 - Fisica Sperimentale, Large Hadron Collider, colliding beams [p p], sensitivity, 530 Physics, ATLAS; direct pair production; third-generation squarks; Large Hadron Collider, pair production [stop]
ddc: ddc:530

Classified by OpenAIRE into

arxiv: High Energy Physics::Phenomenology, Nuclear Experiment, High Energy Physics::Experiment
This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton--proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb$^{-1}$ of collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV, although in some case an additional 4.7 fb$^{-1}$ of collision data at $\sqrt{s}= 7$ TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models. This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton–proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 ${\mathrm{fb}^{-1}}$ of collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV, although in some case an additional $4.7\ {\mathrm{fb}^{-1}}$ of collision data at $\sqrt{s}= 7$ TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models. This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton-proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb$^{-1}$ of collisions at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV, although in some case an additional 4.7 fb$^{-1}$ of collision data at $\sqrt{s}$ = 7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. H. Miyazawa, Prog. Theor. Phys. 36(6), 1266-1276 (1966)
    • 2. P. Ramond, Phys. Rev. D 3, 2415-2418 (1971)
    • 3. Y. Golfand, E. Likhtman, JETP Lett. 13, 323-326 (1971)
    • 4. A. Neveu, J.H. Schwarz, Nucl. Phys. B 31, 86-112 (1971)
    • 5. A. Neveu, J.H. Schwarz, Phys. Rev. D 4, 1109-1111 (1971)
    • 6. J. Gervais, B. Sakita, Nucl. Phys. B 34, 632-639 (1971)
    • 7. D. Volkov, V. Akulov, Phys. Lett. B 46, 109-110 (1973)
    • 8. J. Wess, B. Zumino, Phys. Lett. B 49, 52-54 (1974)
    • 9. J. Wess, B. Zumino, Nucl. Phys. B 70, 39-50 (1974)
    • 10. S. Weinberg, Phys. Rev. D 13, 974-996 (1976)
    • 11. E. Gildener, Phys. Rev. D 14, 1667-1672 (1976)
    • 12. S. Weinberg, Phys. Rev. D 19, 1277-1280 (1979)
    • 13. L. Susskind, Phys. Rev. D 20, 2619-2625 (1979)
    • 14. R. Barbieri, G. Giudice, Nucl. Phys. B 306, 63-76 (1988)
    • 15. B. de Carlos, J. Casas, Phys. Lett. B 309, 320-328 (1993). arXiv:hep-ph/9303291
    • 16. ATLAS Collaboration, JHEP 09, 015 (2014). arXiv:1406.1122 [hep-ex]
    • 17. ATLAS Collaboration, JHEP 1411, 118 (2014). arXiv:1407.0583 [hep-ex]
    • 18. ATLAS Collaboration, JHEP 1406, 124 (2014). arXiv:1403.4853 [hep-ex]
    • 19. ATLAS Collaboration, Phys. Rev. D 90(5), 052008 (2014). arXiv:1407.0608 [hep-ex]
    • 20. ATLAS Collaboration, Eur. Phys. J. C 74, 2883 (2014). arXiv:1403.5222 [hep-ex]
    • 21. ATLAS Collaboration, JHEP 1310, 189 (2013). arXiv:1308.2631 [hep-ex]
    • 22. ATLAS Collaboration, Phys. Lett. B 715, 44-60 (2012). arXiv:1204.6736 [hep-ex]
    • 23. ATLAS Collaboration, Phys. Rev. Lett. 109, 211802 (2012). arXiv:1208.1447 [hep-ex]
    • 24. ATLAS Collaboration, Eur. Phys. J. C 72, 2237 (2012). arXiv:1208.4305 [hep-ex]
    • 25. ATLAS Collaboration, JHEP 11, 094 (2012). arXiv:1209.4186 [hep-ex]
    • 26. ATLAS Collaboration, Phys. Lett. B 720, 13-31 (2013). arXiv:1209.2102 [hep-ex]
    • 27. CMS Collaboration, Phys. Rev. Lett. 111(8), 081802 (2013). arXiv:1212.6961 [hep-ex]
    • 28. CMS Collaboration, JHEP 01, 077 (2013). arXiv:1210.8115 [hepex]
    • 29. CMS Collaboration, Eur. Phys. J. C 73, 2568 (2013). arXiv:1303.2985 [hep-ex]
    • 30. CMS Collaboration, Eur. Phys. J. C 73, 2677 (2013). arXiv:1308.1586 [hep-ex]
    • 31. CMS Collaboration, Phys. Rev. Lett. 112, 161802 (2014). arXiv:1312.3310 [hep-ex]
    • 32. CMS Collaboration. arXiv:1503.08037 [hep-ex]
    • 33. CMS Collaboration, Phys. Lett. B 736, 371-397 (2014). arXiv:1405.3886 [hep-ex]
    • 34. CMS Collaboration, Phys. Lett. B 745, 5-28 (2015). arXiv:1412.4109 [hep-ex]
    • 35. CMS Collaboration, JHEP 1303, 037 (2013). arXiv:1212.6194 [hep-ex]
    • 36. ATLAS Collaboration, JHEP 1501, 068 (2015). arXiv:1411.6795 [hep-ex]
    • 37. ATLAS Collaboration, Phys. Rev. D 88(11), 112003 (2013). arXiv:1310.6584 [hep-ex]
    • 38. P. Fayet, Phys. Lett. B 64, 159-162 (1976)
    • 39. P. Fayet, Phys. Lett. B 69, 489-494 (1977)
    • 40. G.R. Farrar, P. Fayet, Phys. Lett. B 76, 575-579 (1978)
    • 41. P. Fayet, Phys. Lett. B 84, 416-420 (1979)
    • 42. S. Dimopoulos, H. Georgi, Nucl. Phys. B 193, 150-162 (1981)
    • 43. W. Beenakker, R. Höpker, M. Spira (1996). arXiv:hep-ph/9611232
    • 44. M. Krämer et al. arXiv:1206.2892 [hep-ph]
    • 45. W. Beenakker et al., Nucl. Phys. B 515, 3-14 (1998)
    • 46. W. Beenakker et al., JHEP 08, 098 (2010). arXiv:1006.4771 [hepph]
    • 47. W. Beenakker et al., Int. J. Mod. Phys. A 26, 2637-2664 (2011)
    • 48. R. Grober, M. Muhlleitner, E. Popenda, A. Wlotzka. arXiv:1502.05935 [hep-ph]
    • 49. G. D'Ambrosio, G. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B 645, 155-187 (2002). arXiv:hep-ph/0207036
    • 50. R. Grober, M. Muhlleitner, E. Popenda, A. Wlotzka. arXiv:1408.4662 [hep-ph]
    • 51. A.H. Chamseddine, R. Arnowitt, P. Nath, Phys. Rev. Lett. 49, 970 (1982)
    • 52. R. Barbieri, S. Ferrara, C.A. Savoy, Phys. Lett. B 119, 343 (1982)
    • 53. L.E. Ibanez, Phys. Lett. B 118, 73 (1982)
    • 54. L.J. Hall, J.D. Lykken, S. Weinberg, Phys. Rev. D 27, 2359-2378 (1983)
    • 55. N. Ohta, Prog. Theor. Phys. 70, 542 (1983)
    • 56. G.L. Kane, C.F. Kolda, L. Roszkowski, J.D. Wells, Phys. Rev. D 49, 6173-6210 (1994)
    • 57. MSSM Working Group Collaboration, A. Djouadi et al. arXiv:hep-ph/9901246
    • 58. M. Baak et al., Eur. Phys. J. C 75(4), 153 (2015). arXiv:1410.1280 [hep-ex]
    • 59. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71, 1554 (2011). arXiv:1007.1727 [physics.data-an]
    • 60. T. Junk, Nucl. Instrum. Methods A 434, 435-443 (1999). arXiv:hep-ex/9902006
    • 61. A.L. Read, J. Phys. G 28, 2693-2704 (2002)
    • 62. ATLAS Collaboration, JHEP 1410, 24 (2014). arXiv:1407.0600 [hep-ex]
    • 63. ATLAS Collaboration, JHEP 1406, 035 (2014). arXiv:1404.2500 [hep-ex]
    • 64. ATLAS Collaboration, Phys. Rev. Lett. 114(14), 142001 (2015). arXiv:1412.4742 [hep-ex]
    • 65. ATLAS Collaboration, Eur. Phys. J. C 74(10), 3109 (2014). arXiv:1406.5375 [hep-ex]
    • 66. LEP SUSY Working Group (Aleph, Delphi, L3, Opal), Notes lepsusywg/01-03.1 and 04-02.1. (2004). http://lepsusy.web.cern. ch/lepsusy/. Accessed 20 Oct 2015
    • 67. ALEPH Collaboration, A. Heister et al., Phys. Lett. B 583, 247- 263 (2004)
    • 68. DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C 31, 421-479 (2003). arXiv:hep-ex/0311019
    • 69. L3 Collaboration, M. Acciarri et al., Phys. Lett. B 472, 420-433 (2000). arXiv:hep-ex/9910007
    • 70. OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 35, 1-20 (2004). arXiv:hep-ex/0401026
    • 71. M. Ciuchini et al., JHEP 9810, 008 (1998). arXiv:hep-ph/9808328
    • 72. ATLAS Collaboration, JHEP (2015). arXiv:1508.06608 [hep-ex]
    • 73. ATLAS Collaboration, JHEP 1409, 176 (2014). arXiv:1405.7875 [hep-ex]
    • 74. ATLAS Collaboration, JHEP 1504, 116 (2015). arXiv:1501.03555 [hep-ex]
    • 75. ATLAS Collaboration, JHEP 1310, 130 (2013). arXiv:1308.1841 [hep-ex]
    • 76. ATLAS Collaboration, Phys. Rev. Lett. 114(16), 161801 (2015). arXiv:1501.01325 [hep-ex]
    • 77. CMS Collaboration, JHEP 1505, 078 (2015). arXiv:1502.04358 [hep-ex]
    • 78. CMS Collaboration, JHEP 1401, 163 (2014). arXiv:1311.6736
    • 79. CMS Collaboration, Phys. Rev. D 91, 052018 (2015). arXiv:1502.00300 [hep-ex]
    • 80. CMS Collaboration, JHEP 1406, 055 (2014). arXiv:1402.4770 [hep-ex]
    • 81. CMS Collaboration, Phys. Lett. B 733, 328-353 (2014). arXiv:1311.4937 [hep-ex]
    • 82. CMS Collaboration, Phys. Lett. B 725, 243-270 (2013). arXiv:1305.2390 [hep-ex]
    • 83. ATLAS Collaboration, JHEP 1411, 056 (2014). arXiv:1409.6064 [hep-ex]
    • 84. CMS Collaboration, JHEP 1410, 160 (2014). arXiv:1408.3316 [hep-ex]
    • 85. A. Delgado et al., Eur. Phys. J. C 73(3), 2370 (2013). arXiv:1212.6847 [hep-ph]
    • 86. M. Papucci, J.T. Ruderman, A. Weiler, JHEP 1209, 035 (2012). arXiv:1110.6926 [hep-ph]
    • 87. M.W. Cahill-Rowley, J.L. Hewett, A. Ismail, T.G. Rizzo, Phys. Rev. D 86, 075015 (2012). arXiv:1206.5800 [hep-ph]
    • 88. N. Arkani-Hamed, A. Delgado, G. Giudice, Nucl. Phys. B 741, 108-130 (2006). arXiv:hep-ph/0601041
    • 89. (2015). https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ PAPERS/SUSY-2014-07/hepdata_info.pdf. Accessed 20 Oct 2015
    • 90. The Durham HepData Project (2015). http://hepdata.cedar.ac.uk/ view/ins1380183. Accessed 20 Oct 2015
    • 91. ATLAS Collaboration, JINST 3, S08003 (2008)
    • 92. ATLAS Collaboration, Eur. Phys. J. C 73, 2518 (2013). arXiv:1302.4393 [hep-ex]
    • 93. ATLAS Collaboration, ATLAS-CONF-2010-069 (2010). http:// cdsweb.cern.ch/record/1281344. Accessed 20 Oct 2015
    • 94. W. Lampl et al., ATL-LARG-PUB-2008-002 (2008). http:// cdsweb.cern.ch/record/1099735. Accessed 20 Oct 2015
    • 95. M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 063 (2008). arXiv:0802.1189 [hep-ph]
    • 96. M. Cacciari, G.P. Salam, Phys. Lett. B 641, 57-61 (2006). arXiv:hep-ph/0512210
    • 97. M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097 [hep-ph]
    • 98. C. Issever, K. Borras, D. Wegener, Nucl. Instrum. Methods A 545, 803-812 (2005). arXiv:physics/0408129
    • 99. M. Cacciari, G.P. Salam, Phys. Lett. B 659, 119-126 (2008). arXiv:0707.1378 [hep-ph]
    • 100. ATLAS Collaboration, Eur. Phys. J. C 73, 2304 (2013). arXiv:1112.6426 [hep-ex]
    • 101. ATLAS Collaboration, ATLAS-CONF-2012-043 (2012). http:// cdsweb.cern.ch/record/1435197. Accessed 20 Oct 2015
    • 102. ATLAS Collaboration, ATLAS-CONF-2011-089 (2011). http:// cdsweb.cern.ch/record/1356198. Accessed 20 Oct 2015
    • 103. ATLAS Collaboration, ATLAS-CONF-2011-102 (2011). http:// cdsweb.cern.ch/record/1369219. Accessed 20 Oct 2015
    • 104. ATLAS Collaboration, Eur. Phys. J. C 72, 1909 (2012). arXiv:1110.3174 [hep-ex]
    • 105. ATLAS Collaboration, ATLAS-CONF-2011-021 (2011). http:// cdsweb.cern.ch/record/1336750. Accessed 20 Oct 2015
    • 106. ATLAS Collaboration, ATLAS-CONF-2011-063 (2011). http:// cdsweb.cern.ch/record/1345743. Accessed 20 Oct 2015
    • 107. C. Lester, D. Summers, Phys. Lett. B 463, 99-103 (1999). arXiv:hep-ph/9906349
    • 108. A. Barr, C. Lester, P. Stephens, J. Phys. G 29, 2343-2363 (2003). arXiv:hep-ph/0304226
    • 109. M.L. Graesser, J. Shelton, Phys. Rev. Lett. 111(12), 121802 (2013). arXiv:1212.4495 [hep-ph]
    • 110. D.R. Tovey, JHEP 0804, 034 (2008). arXiv:0802.2879 [hep-ph]
    • 111. T. Eifert, B. Nachman, Phys. Lett. B 743, 218-223 (2015). arXiv:1410.7025 [hep-ph]
    • 112. ATLAS Collaboration, Eur. Phys. J. C 75(7), 330 (2015). arXiv:1503.05427 [hep-ex]
    • 113. ATLAS Collaboration, Phys. Lett. B 712, 289-308 (2012). arXiv:1203.6232 [hep-ex]
    • 114. CMS Collaboration, Eur. Phys. J. C 73(10), 2610 (2013). arXiv:1306.1126 [hep-ex]
    • 115. CMS Collaboration, Phys. Lett. B 721, 190-211 (2013). arXiv:1301.4698 [hep-ex]
    • 116. K. Rolbiecki, K. Sakurai, JHEP 1309, 004 (2013). arXiv:1303.5696 [hep-ph]
    • 117. J.S. Kim, K. Rolbiecki, K. Sakurai, J. Tattersall, JHEP 1412, 010 (2014). arXiv:1406.0858 [hep-ph]
    • 118. D. Curtin, P. Meade, P.-J. Tien, Phys. Rev. D 90(11), 115012 (2014). arXiv:1406.0848 [hep-ph]
    • 119. T. Melia, JHEP 1201, 143 (2012). arXiv:1110.6185 [hep-ph]
    • 120. ATLAS Collaboration, Eur. Phys. J. C 75(7), 349 (2015). arXiv:1503.05066 [hep-ex]
    • 121. F. Cascioli et al., Phys. Lett. B 734, 210-214 (2014). arXiv:1309.5912 [hep-ph]
    • 122. T. Gleisberg et al., JHEP 02, 007 (2009). arXiv:0811.4622 [hepph]
    • 123. F. Cascioli, P. Maierhofer, S. Pozzorini, Phys. Rev. Lett. 108, 111601 (2012). arXiv:1111.5206 [hep-ph]
    • 124. ATLAS Collaboration, Phys. Rev. D 90(7), 072004 (2014). arXiv:1407.0371 [hep-ex]
    • 125. ATLAS Collaboration, Eur. Phys. J. C 70, 823-874 (2010). arXiv:1005.4568 [physics.ins-det]
    • 126. GEANT4 Collaboration, S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250-303 (2003)
    • 127. ATLAS Collaboration, ATL-PHYS-PUB-2010-013 (2010). http://cdsweb.cern.ch/record/1300517. Accessed 20 Oct 2015
    • 128. M. Bähr et al., Eur. Phys. J. C 58, 639-707 (2008). arXiv:0803.0883 [hep-ph]
    • 129. T. Sjöstrand, S. Mrenna, P.Z. Skands, JHEP 05, 026 (2006). arXiv:hep-ph/0603175
    • 130. J. Alwall et al., JHEP 06, 128 (2011). arXiv:1106.0522 [hep-ph]
    • 131. J. Pumplin et al., JHEP 07, 012 (2002). arXiv:hep-ph/0201195
    • 132. B. Allanach, Comput. Phys. Commun. 143, 305-331 (2002). arXiv:hep-ph/0104145
    • 133. A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Polon. B 38, 635-644 (2007). arXiv:hep-ph/0609292
    • 26 (a)National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (b)Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (c)University Politehnica Bucharest, Bucharest, Romania; (d)West University in Timisoara, Timisoara, Romania
    • 27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
    • 28 Cavendish Laboratory, University of Cambridge, Cambridge, UK
    • 29 Department of Physics, Carleton University, Ottawa, ON, Canada
    • 30 CERN, Geneva, Switzerland
    • 31 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
    • 32 (a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile
    • 33 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b)Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; (c)Department of Physics, Nanjing University, Nanjing, Jiangsu, China; (d)School of Physics, Shandong University, Shandong, China; (e)Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China; (f)Physics Department, Tsinghua University, Beijing 100084, China
    • 34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
    • 35 Nevis Laboratory, Columbia University, Irvington, NY, USA
    • 36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
    • 37 (a)INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b)Dipartimento di Fisica, Università della Calabria, Rende, Italy
    • 38 (a)AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland; (b)Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
    • 39 Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
    • 40 Physics Department, Southern Methodist University, Dallas, TX, USA
    • 41 Physics Department, University of Texas at Dallas, Richardson, TX, USA
    • 42 DESY, Hamburg and Zeuthen, Germany
    • 43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
    • 44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
    • 45 Department of Physics, Duke University, Durham, NC, USA
    • 46 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
    • 47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
    • 48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
    • 49 Section de Physique, Université de Genève, Geneva, Switzerland
    • 50 (a)INFN Sezione di Genova, Genoa, Italy; (b)Dipartimento di Fisica, Università di Genova, Genoa, Italy
    • 51 (a)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
    • 52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
    • 53 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
    • 54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
    • 55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
    • 56 Department of Physics, Hampton University, Hampton, VA, USA
    • 57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
    • 58 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c)ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
    • 59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
    • 60 (a)Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; (b)Department of Physics, The University of Hong Kong, Hong Kong, Hong Kong; (c)Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
    • 61 Department of Physics, Indiana University, Bloomington, IN, USA
    • 62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
    • 63 University of Iowa, Iowa City, IA, USA
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    40
    40%
    67
    67%
    40
    40%
  • No similar publications.

Share - Bookmark

Published in

Funded by projects

  • SNSF | Teilchenphysik-Experimente...
  • EC | EPLANET

Related to

  • egiEGI virtual organizations: atlas
  • egiEGI virtual organizations: cms

Cite this article