LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Al-Qahtani, S.; Heath, Andrew C.; Quenby, Siobhan; Dawood, F.; Floyd, R.; Burdyga, T.; Wray, S. (2012)
Publisher: Springer New York LLC
Journal: Diabetologia
Languages: English
Types: Article
Subjects: Myometrium, Translational medicine, Oxytocin, Calcium, Muscle histology, RG, Smooth muscle, Force, Diabetes, Article
Aims/hypothesis The prevalence of births worldwide complicated by diabetes mellitus is increasing. In the UK, for example, <25% of diabetic women have a non-instrumental vaginal delivery. Strikingly, more than half the Caesarean sections (CS) in these patients are non-elective, but the reasons for this are not understood. We have tested the hypothesis that poor myometrial contractility as a consequence of the disease contributes to this high CS rate. Methods We compared spontaneous, high K depolarisation and oxytocin-induced contractions from diabetic and matched control patients having an elective CS. To investigate the mechanism of any differences we measured intracellular Ca, and performed western blotting and compared the tissues histologically. Results There was significantly decreased contraction amplitude and duration in uteri from diabetic compared with control patients, even when possible confounders such as BMI were analysed. Reduced intracellular calcium signals and expression of calcium entry channels were found in uteruses from diabetic patients, which, along with a reduction in muscle content found on histological examination, could explain the reduced force. Myometrium from diabetic patients was responsive to oxytocin, but still did not reach the levels found in non-diabetic patients. Conclusions/interpretations These are the first data investigating myometrium in diabetic patients and they support the hypothesis that there is poorer contractility even in the presence of oxytocin. The underlying mechanism is related to reduced Ca channel expression and intracellular calcium signals and a decrease in muscle mass. We conclude that these factors significantly contribute to the increased emergency CS rate in diabetic patients. Electronic supplementary material The online version of this article (doi:10.1007/s00125-011-2371-6) contains peer-reviewed but unedited supplementary material, which is available to authorised users.

Share - Bookmark

Funded by projects

  • WT

Cite this article