LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Smith, L.W.; Al-Taie, H.; Lesage, A.A.J.; Thomas, K.J.; Sfigakis, F.; See, P.; Griffiths, J.P.; Farrer, I.; Jones, G.A.C.; Ritchie, D.A.; Kelly, M.J.; Smith, C.G. (2016)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects:
© 2016 American Physical Society. © 2016 American Physical Society.We study 95 split gates of different size on a single chip using a multiplexing technique. Each split gate defines a one-dimensional channel on a modulation-doped GaAs/AlGaAs heterostructure, through which the conductance is quantized. The yield of devices showing good quantization decreases rapidly as the length of the split gates increases. However, for the subset of devices showing good quantization, there is no correlation between the electrostatic length of the one-dimensional channel (estimated using a saddle-point model) and the gate length. The variation in electrostatic length and the one-dimensional subband spacing for devices of the same gate length exceeds the variation in the average values between devices of different lengths. There is a clear correlation between the curvature of the potential barrier in the transport direction and the strength of the "0.7 anomaly": the conductance value of the 0.7 anomaly reduces as the barrier curvature becomes shallower. These results highlight the key role of the electrostatic environment in one-dimensional systems. Even in devices with clean conductance plateaus, random fluctuations in the background potential are crucial in determining the potential landscape in the active device area such that nominally identical gate structures have different characteristics.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • at www.repository.cam.ac.uk/handle/1810/249174. The authors thank A. R. Hamilton, J. von Delft, S. Ludwig, and E. T. Owen for helpful discussions, and R. D. Hall for e-beam exposure. y Present address: Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, United
    • [1] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, J. Ahmed, J. E. F. Frost, D. G. Hasko, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21, L209 (1988).
    • [2] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).
    • [3] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A. Ritchie, Phys. Rev. Lett. 77, 135 (1996).
    • [4] T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies, Phys. Rev. Lett. 56, 1198 (1986).
    • [5] H.-M. Lee, K. Murakia, E. Y. Chang, and Y. Hirayama, J. Appl. Phys. 100, 043701 (2006).
    • [6] E. J. Koop, A. I Lerescu, J. Liu, B. J. van Wees, D. Reuter, A. D. Wieck, and C. H. van der Wal, J. Supercond. Nov. Magn 20, 433 (2007).
    • [7] D. J. Reilly, G. R. Facer, A. S. Dzurak, B. E. Kane, R. G. Clark, P. J. Stiles, A. R. Hamilton, J. L. O'Brien, N. E. Lumpkin, L. N. Pfei er, and K. W. West, Phys. Rev. B 63, 121311 (2001).
    • [8] S. J. Koester, B. Brar, C. R. Bolognesi, E. J. Caine, A. Patlach, E. L. Hu, H. Kroemer, and M. J. Rooks, Phys. Rev. B 53 13063 (1996).
    • [9] K. J. Thomas, D. L. Sawkey, M. Pepper, W. R. Tribe, I. Farrer, M. Y. Simmons and D. A. Ritchie, J. Phys.: Condens. Matter 16, L279-L286 (2004).
    • [10] M. J. Iqbal, R. Levy, E. J. Koop, J. B. Dekker, J. P. de Jong, J. H. M. van der Velde, D. Reuter, A. D. Wieck, R. Aguado, Y. Meir and C. H. van der Wal, Nature (London) 501, 79 (2013).
    • [11] M. J. Iqbal, J. P. de. Jong, D. Reuter, A. D. Wieck, and C. H. van der Wal, J. Appl. Phys. 113, 024507 (2013)
    • [12] J. Heyder, F. Bauer, E. Schubert, D. Borowsky, D. Schuh, W. Wegscheider, J. von Delft, and S. Ludwig, arXiv:1409.3415
    • [13] G. Timp, R. Behringer, S. Sampere, J. E. Cunningham, and R. E. Howard, in Proceedings of the International Symposium on Nanostructure Physics and Fabrication, edited by M. A. Reed and W. P. Kirk (Academic, New York, 1989), p. 331.
    • [14] K. J. Thomas, J. T. Nicholls, N. J. Appleyard, M. Y. Simmons, M. Pepper, D. R. Mace, W. R. Tribe, and D. A. Ritchie, Phys. Rev. B 58, 4846 (1998).
    • [15] A. P. Micolich, J. Phys. Condens. Matter 23, 443201 (2011).
    • [16] C.-K. Wang and K.-F. Berggren, Phys. Rev. B 54, R14257 (1996).
    • [17] S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kouwenhoven, C. M. Marcus, K. Hirose, N. S. Wingreen, and V. Umansky, Phys. Rev. Lett. 88, 226805 (2002).
    • [18] Y. Meir, K. Hirose, and N. S. Wingreen, Phys. Rev. Lett. 89, 196802 (2002).
    • [19] T. Rejec and Y. Meir, Nature (London) 442, 900 (2006).
    • [20] K. A. Matveev, Phys. Rev. B 70, 245319 (2004).
    • [21] B. Brun, F. Martins, S. Faniel, B. Hackens, G. Bachelier, A. Cavanna, C. Ulysse, A. Ouerghi, U. Gennser, D. Mailly, S. Huant, V. Bayot, M. Sanquer, and H. Sellier, Nat Commun. 5, 4290 (2014).
    • [22] C. Sloggett, A. I. Milstein, and O. P. Sushkov, Eur. Phys. J. B 61, 427{432 (2008).
    • [23] F. Bauer, J. Heyder, E. Schubert, D. Borowsky, D. Taubert, B. Bruognolo, D. Schuh, W. Wegscheider, J. von Delft, and S. Ludwig, Nature (London) 501, 73 (2013).
    • [24] H. Al-Taie, L. W. Smith, B. Xu, P. See, J. P. Gri ths, H. E. Beere, G. A. C. Jones, D. A. Ritchie, M. J. Kelly, and C. G. Smith, Appl. Phys. Lett. 102, 243102 (2013).
    • [25] L. W. Smith, H. Al-Taie, F. S gakis, P. See, A. A. J. Lesage, B. Xu, J. P. Gri ths, H. E. Beere, G. A. C. Jones, D. A. Ritchie, M. J. Kelly, and C. G. Smith, Phys. Rev. B 90, 045426 (2014).
    • [26] H. Al-Taie, L. W. Smith, A. A. J. Lesage, P. See, J. P. Gri ths, H. E. Beere, G. A. C. Jones, D. A. Ritchie, M. J. Kelly, and C. G. Smith, J. Appl. Phys. J. Appl. Phys. 118, 075703 (2015).
    • [27] A. A. J. Lesage, L. W. Smith, H. Al-Taie, P. See, J. P. Gri ths, I. Farrer, G. A. C. Jones, D. A. Ritchie, M. J. Kelly, and C. G. Smith, J. Appl. Phys. 117, 015704 (2015).
    • [28] L. W. Smith, H. Al-Taie, A. A. J. Lesage, F. S gakis, P. See, J. P. Gri ths, H. E. Beere, G. A. C. Jones, D. A. Ritchie, A. R. Hamilton, M. J. Kelly, and C. G. Smith, Phys. Rev. B 91, 235402 (2015).
    • [29] R. K. Puddy, L. W Smith, H. Al-Taie, C. H. Chong, I. Farrer, J. P. Gri ths, D. A. Ritchie, M. J. Kelly, M. Pepper, and C. G. Smith, Appl. Phys. Lett. 107, 143501 (2015).
    • [30] J. H. Davies, I. A. Larkin and E. V. Sukhorukov, J. Appl. Phys. 77, 4504 (1995).
    • [31] N. K. Patel, J. T. Nicholls, L. Mart n-Moreno, M. Pepper, J. E. F Frost, D. A. Ritchie, and G. A. C. Jones, Phys. Rev. B 44, 13549 (1991).
    • [32] A. Srinivasan, L. A. Yeoh, O. Klochan, T. P. Martin, J. C. H. Chen, A. P. Micolich, A. R. Hamilton, D. Reuter, and A. D. Wieck, Nano Lett. 13, 148 (2013).
    • [33] K. J. Thomas, M. Y. Simmons, J. T. Nicholls, D. R. Mace, M. Pepper, and D. A. Ritchie, Appl. Phys. Lett. 67, 109 (1995).
    • [34] The error associated with the mean value is given by the square root of the averaged square of individual errors divided by the number of data points.
    • [35] M. Buttiker, Phys. Rev. B 41, 7906 (1990).
    • [36] J. A. Nixon, J. H. Davies, and H. U. Baranger, Phys. Rev. B 43, 12638 (1991).
    • [37] G. Vionnet and O. P. Sushkov, arXiv1510.01426.
    • [38] A. M. Lunde, A. De Martino, A. Schulz, R. Egger, and K. Flensberg, New Journal of Physics 11, 023031 (2009).
    • [39] C.-T. Liang, I. M. Castleton, J. E. F. Frost, C. H. W. Barnes, C. G. Smith, C. J. B. Ford, D. A. Ritchie, and M. Pepper, Phys. Rev. B 55, 6723 (1997).
    • [40] F. S gakis, C. J. B. Ford, M. Pepper, M. Kataoka, D. A. Ritchie, and M. Y. Simmons, Phys. Rev. Lett. 100, 026807 (2008).
    • [41] J. J. Harris, C. T. Foxon, K. W. J. Barnham, D. Lacklison, J. Hewett and C. White, J. Appl. Phys. 61, 1219 (1987).
    • [42] C. T. Foxon, J. J. Harris, D. Hilton, J. Hewett and C. Roberts, Semicond. Sci. Technol. 4, 582-585 (1989).
    • [43] B. E. Kane, L. N. Pfei er, K. W. West, and C. K. Harnett, Appl. Phys. Lett. 63, 2132 (1993).
    • [44] F. S gakis, K. Das Gupta, S. Sarkozy, I. Farrer, D. A. Ritchie, M. Pepper, and G. A. C. Jones, Physica E 42, 1200 (2010).
    • [45] S. Sarkozy, F. S gakis, K. Das Gupta, I. Farrer, D. A. Ritchie, G. A. C. Jones, and M. Pepper, Phys. Rev. B 79, 161307(R) (2009).
    • [46] A. M. See, I. Pilgrim, B. C. Scannell, R. D. Montgomery, O. Klochan, A. M. Burke, M. Aagesen, P. E. Lindelof, I. Farrer, D. A. Ritchie, R. P. Taylor, A. R. Hamilton, and A. P. Micolich, Phys. Rev. Lett. 108, 196807 (2012).
    • [47] A. M. See, A. R. Hamilton, A. P. Micolich, M. Aagesen, and P. E. Lindelof, Phys. Rev. B 91, 085417 (2015).
    • [48] A linear t is plotted to highlight the upward trend. This is simply a guide to the eye. The range of ~!x;1 is too small to determine the exact nature of the relationship between Ge and ~!x;1.
    • [49] A. M. Burke, O. Klochan, I. Farrer, D. A. Ritchie, A. R. Hamilton, and A. P. Micolich, Nano Lett. 12, 4495 (2012).
    • [50] B. E. Kane, G. R. Facer, A. S. Dzurak, N. E. Lumpkin, R. G. Clark, L. N. Pfei er and K. W. West, Appl. Phys. Lett. 72, 3506 (1998).
    • [51] P. Jaksch, I. Yakimenko, and K.-F. Berggren, Phys. Rev. B 74, 235320 (2006).
    • [52] K. Hirose, Y. Meir, and N. S. Wingreen, Phys. Rev. Lett. 90, 026804 (2003).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article