LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Steer, Brian; Gorbunov, Boris; Price, Mark C.; Podoleanu, Adrian G. (2016)
Publisher: IOP Publishing Ltd
Languages: English
Types: Article
Subjects: QC, QC355
In this paper we present a method for the quantification of chemically distinguished airborne particulate matter, required for health risk assessment. Rather than simply detecting chemical compounds in a sample, we demonstrate an approach for the quantification of exposure to airborne particles and nanomaterials. In line with increasing concerns over the proliferation of engineered particles we consider detection of synthetically produced ZnO crystals. A multi-stage approach is presented whereby the particles are first aerodynamically size segregated from a lab-generated single component aerosol in an impaction sampler. These size fractionated samples are subsequently analysed by Raman spectroscopy. Imaging analysis is applied to Raman spatial maps to provide chemically specific quantification of airborne exposure against background which is critical for health risk evaluation of exposure to airborne particles. Here we present a first proof-of-concept study of the methodology utilising particles in the 2-4 μm aerodynamic diameter range to allow for validation of the approach by comparison to optical microscopy. The results show that the combination of these techniques provides independent size and chemical discrimination of particles. Thereby a method is provided to allow quantitative and chemically distinguished measurements of aerosol concentrations separated into exposure relevant size fractions. © 2016 IOP Publishing Ltd.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abràmoff, M. D., Magalhães, P.J. and Ram, S.J. (2004). Image Processing with ImageJ. Biophot. Int. 11 (7): 36-42.
    • Ali, S.M., Bonnier, F., Ptasinski, K., Lambkin, H., Flynn, K., Lyng, F.M. and Byrne, H.J. (2013). Raman Spectroscopic Mapping for the Analysis of Solar Radiation Induced Skin Damage. Analyst (March 8).
    • Alim, K.A., Fonoberov, V.A., Shamsa, M. and Balandin. A.A. (2005). Micro-Raman Investigation of Optical Phonons in ZnO Nanocrystals. J. Appl. Phys. 97 (12): 124313.
    • Ault, A.P., Zhao, D., Ebben, C.J., Tauber, M.J., Geiger, F.M., Prather, K.A. and Grassian, V.H. (2013). Raman Microspectroscopy and Vibrational Sum Frequency Generation Spectroscopy as Probes of the Bulk and Surface Compositions of Size-resolved Sea Spray Aerosol Particles. Phys. Chem. Chem. Phys.: PCCP 15 (17) (May 7): 6206-14.
    • Avzianova, E., and Brooks, S.D. (2014). Analysis of Nickel (II) in Particulate Matter by Raman Microspectroscopy. J. Aerosol Sci. 67 (January): 207-214.
    • Batonneau, Y., Laureyns, J., Merlin, J.-C. and Brémard, C. (2001). Self-modeling Mixture Analysis of Raman Microspectrometric Investigations of Dust Emitted by Lead and Zinc Smelters. Anal. Chim. Acta 446 (1-2) (November): 23-37.
    • Batonneau, Y., Sobanska, S., Laureyns, J. and Brémard, C. (2006). Confocal Microprobe Raman Imaging of Urban Tropospheric Aerosol Particles. Environ. Sci. Technol. 40 (4) (February 15): 1300-6.
    • Beddows, D.C.S. and Telle, H.H. (2005). Prospects of Real-time Single-particle Biological Aerosol Analysis: A Comparison Between Laser-induced Breakdown Spectroscopy and Aerosol Time-of-flight Mass Spectrometry. Spectrochim. Acta B. 60 (7-8) (August): 1040- 1059.
    • Buehler, M.F., Allen, T.M. and Davis. E.J. (1991). Microparticle Raman Spectroscopy of Multicomponent Aerosols. J. Colloid Inter. Sci. 146 (1): 79-89.
    • Chow, J. C. (1995). Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles. Journal of the Air & Waste Management Association, 45(5), 320-382.
    • Chow, J. C., Doraiswamy, P., Watson, J. G., Chen, L.-W. A., Ho, S. S. H., & Sodeman, D. A. (2008). Advances in integrated and continuous measurements for particle mass and chemical composition. Journal of the Air & Waste Management Association, 58(2), 141- 163.
    • Craig, R. L., Bondy, A. L., & Ault, A. P. (2015). Surface Enhanced Raman Spectroscopy Enables Observations of Previously Undetectable Secondary Organic Aerosol Components at the Individual Particle Level. Analytical Chemistry, 87 (15), 7510-7514.
    • Delhaye, M., and Dhamelincourt. P. (1975). Raman Microprobe and Microscope with Laser Excitation. J. Raman Spectros. 3: 33-43.
    • Donaldson, K., Stone, V., Gilmour, P.S., Brown, D.M. and MacNee, W. (2000). Ultrafine Particles: Mechanisms of Lung Injury. Philos. T. R. Soc. A. 358 (1775): 2741-2749.
    • Eggersdorfer, M. L., and Pratsinis, S. E. (2014). Agglomerates and aggregates of nanoparticles made in the gas phase. Advanced Powder Technology, 25(1), 71-90.
    • Estrela-Lopis, I., Romero, G., Rojas, E., Moya, S.E. and Donath, E. (2011). Nanoparticle Uptake and Their Co-localization with Cell Compartments - a Confocal Raman Microscopy Study at Single Cell Level. J. Phys. Conf. Ser. 304 (July 6): 012017.
    • Gorbunov, B, Priest, N.D., Muir, R.B., Jackson, P.R. and Gnewuch, H. (2009) A Novel Sizeselective Airborne Particle Size Fractionating Instrument for Health Risk Evaluation. Ann. Occup. Hyg. 53 (3): 225-37.
    • Gouadec, G., and Colomban, P. (2007). Raman Spectroscopy of Nanomaterials: How Spectra Relate to Disorder, Particle Size and Mechanical Properties. Prog. Cryst. Growth Ch. 53 (1) (March): 1-56.
    • Gulson, B., McCall, M.J., Korsch, M., Gomez, L., Casey, P., Oytam, Y., Taylor, A., McCulloch, M., Trotter, J., Kinsley, L. and Greenoak, G. (2010). Small Amounts of Zinc from Zinc Oxide Particles in Sunscreens Applied Outdoors Are Absorbed Through Human Skin. Toxicol. Sci. 118 (1) (November): 140-9.
    • Hoffmann, G.G., Oelichmann, B. and Schrader, B. (1991). Raman Spectroscopy of Optically Trapped Single Aerosol Particles. J. Aerosol Sci. 22 (S.1): S427-S430.
    • Hoffmann, G.G., Lübben, J.F. and Schrader, B. (1995). Composition Analysis of Optically Levitated Aerosol Single Particles. J. Mol. Struct. 349 (95) (April): 145-147.
    • Horn, I., and Günther, D. (2003). The Influence of Ablation Carrier Gasses Ar, He and Ne on the Particle Size Distribution and Transport Efficiencies of Laser Ablation-induced Aerosols: Implications for LA-ICP-MS. Appl. Surf. Sci. 207: 144-157.
    • Huong, P.V. and Verma, A.L. (1990). Characterization of Materials by micro-Raman Spectroscopy. Mater. Sci. Eng. B. 5 (2): 255-260.
    • Ivleva, N. P., McKeon, U., Niessner, R. and Pöschl, U. (2007). Raman Microspectroscopic Analysis of Size-Resolved Atmospheric Aerosol Particle Samples Collected with an ELPI: Soot, Humic-Like Substances, and Inorganic Compounds. Aerosol Sci. Tech. 41 (7) (June 5): 655-671.
    • Keller, M., Kreck, G., Holzapfel Y., Neubauer N., and Seipenbusch M. (2011). Monitoring Method for Carbon Nanotubes (CNT): Personal Sampler and Corresponding Reading Device. Proc. Int. Conf. Multi-Material Micro Manufacture (2011): 149-155.
    • Koch, J., Feldmann, I., Jakubowski, N., and Niemax, K. (2002). Elemental Composition of Laser Ablation Aerosol Particles Deposited in the Transport Tube to an ICP. Spectrochim. Acta B. 57: 975-985.
    • Kong, L., Zhang, P., Setlow, P. and Li, Y. (2011). Multifocus Confocal Raman Microspectroscopy for Rapid Single-particle Analysis. J. Biomed. Opt. 16 (12) (December): 120503.
    • Kreyling, W.G., Semmler-Behnke, M. and Möller, W. (2006). Health Implications of Nanoparticles. J. Nanopart. Res. 8 (5) (October 7): 543-562.
    • Krueger, B. J., Grassian V.H., Iedema, M.J., Cowlin, J.P. and Laskin, A. (2003). Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-dispersive X-ray Analysis. Anal. Chem. 75 (19): 5170-5179.
    • Kuhlbusch, T.A.J., Asbach, C., Fissan, H., Göhler, D. and Stintz, M. (2011). Nanoparticle Exposure at Nanotechnology Workplaces: a Review. Part. Fibre Toxicol. 8 (1) (January): 22.
    • Laskin, A., Iedema, M.J. and Cowin, J.P. (2002). Quantitative Time-resolved Monitoring of Nitrate Formation in Sea Salt Particles Using a CCSEM/EDX Single Particle Analysis. Environ. Sci. Technol. 36 (23) (December 1): 4948-55.
    • Laskin, J., Laskin, A., and Nizkorodov, S.A. (2013). New Mass Spectrometry Techniques for Studying Physical Chemistry of Atmospheric Heterogeneous Processes. Int. Rev. Phys. Chem. 32 (1) (March): 128-170.
    • Lee, A.KY. and Chan, C.K. (2007). Single Particle Raman Spectroscopy for Investigating Atmospheric Heterogeneous Reactions of Organic Aerosols. Atmos. Environ. 41 (22) (July): 4611-4621.
    • Ling, L. and Li, Y. (2013). Measurement of Raman Spectra of Single Airborne Absorbing Particles Trapped by a Single Laser Beam. Opt. Lett. 38 (4) (February 15): 416-8.
    • Liu, Y., Yang, Z., Desyaterik, Y., Gassman, P.L., Wang, H., and Laskin, A. (2008). Hygroscopic Behavior of Substrate-Deposited Particles Studied by micro-FT-IR Spectroscopy and Complementary Methods of Particle Analysis. Anal. Chem. 80 (1148): 633-642.
    • Liu, Y., and Laskin, A. (2009). Hygroscopic Properties of CH3SO3NA, CH3SO3NH4, (CH3SO3)2Mg, and (CH3SO3)2Ca Particles Studied by micro-FTIR Spectroscopy. J. Phys. Chem. A 113: 1531-1538.
    • Matti Maricq, M. (2007). Chemical characterization of particulate emissions from diesel engines: A review, 38, 1079-1118.
    • Matthäus, C., Boydston-White, S., Miljkovi, M., Romeo, M., and Diem, M. (2006). Raman and infrared microspectral imaging of mitotic cells. Appl. Spectrosc. 60 (1): 1-8.
    • Maynard, A. D. (2000). Overview of Methods for Analysing Single Ultrafine Particles. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 358(1775), 2593-2610.
    • Maynard, A.D. and Kuempel, E.D. (2005). Airborne Nanostructured Particles and Occupational Health. J. Nanopart. Res. 7 (6) (December): 587-614.
    • Maynard, A.D. and Aitken, R.J. (2007). Assessing Exposure to Airborne Nanomaterials: Current Abilities and Future Requirements. Nanotoxicology 1 (1) (March): 26-41.
    • McMurry, P. H. (2000). A review of atmospheric aerosol measurements. Atmospheric Environment, 34(12-14), 1959-1999.
    • Menzel, N., Schramel, P. and Wittmaack, K. (2002). Elemental Composition of Aerosol Particulate Matter Collected on Membrane Filters: A Comparison of Results by PIXE and ICP-AES. Nucl. Instrum. Meth. B. 189: 94-99.
    • Mertes, S., Dippel, B. and Schwarzenböck, A. (2004). Quantification of Graphitic Carbon in Atmospheric Aerosol Particles by Raman Spectroscopy and First Application for the Determination of Mass Absorption Efficiencies. J. Aerosol Sci. 35 (3) (March): 347-361.
    • Meyer, D.E., Curran, M.A. and Gonzalez, M.A. (2009). An Examination of Existing Data for the Industrial Manufacture and Use of Nanocomponents and Their Role in the Life Cycle Impact of Nanoproducts. Environ. Sci. Technol. 43 (5): 1256 - 1263.
    • Mouli, P.C., Mohan, S.V., Balaram, V., Kumar, M.P. and Reddy, S.J. (2006). A Study on Trace Elemental Composition of Atmospheric Aerosols at a Semi-arid Urban Site Using ICP-MS Technique. Atmos. Environ. 40: 136-146.
    • Nelson, M.P., Zugates, C.T., Treado, P.J., Casuccio, G.S., Exline, D.L. and Schlaegle,S.F. (2001). Combining Raman Chemical Imaging and Scanning Electron Microscopy to Characterize Ambient Fine Particulate Matter. Aerosol Sci. Tech. 34 (1): 108-117.
    • Nizkorodov, S.A., Laskin, J. and Laskin, A. (2011). Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry. Phys. Chem. Chem. Phys.: PCCP 13 (9) (March 7): 3612-29.
    • O'Brien, R.E., Laskin, A., Laskin, J., Liu, S., Weber, R., Russell, L.M. and Goldstein, A.H. (2013). Molecular Characterization of Organic Aerosol Using Nanospray Desorption/Electrospray Ionization Mass Spectrometry: CalNex 2010 Field Study. Atmos. Environ. 68 (April): 265-272.
    • Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D. and Yang, H. (2005). Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy. Part. Fibre Toxicol. 2 (October 6): 8.
    • Offroy, M., Moreau, M., Sobanska, S., Milanfar, P., & Duponchel, L. (2015). Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization. Scientific Reports, 5 (July), 12303.
    • Ono-Ogasawara, M., Serita, F. and Takaya, M. (2009). Distinguishing Nanomaterial Particles from Background Airborne Particulate Matter for Quantitative Exposure Assessment. J. Nanopart. Res. 11 (7): 1651-1659.
    • Pope, C.A. III, and Dockery, D.W. (2006). Health Effects of Fine Particulate Air Pollution: Lines That Connect. J. Air Waste Manage. (April 2013): 37-41.
    • Prather, K.A., Nordmeyer, T. and Salt, K. (1994). Real-time Characterization of Individual Aerosol Particles Using Time-of-flight Mass Spectrometry. Anal. Chem. 66 (9) (May): 1403-1407.
    • Rosen, H, and Novakov, T. (1977). Raman Scattering and the Characterisation of Atmospheric Aerosol Particles. Nature 266 (21 April 1977): 708-710.
    • Ryu, J., and Ro, C.-U. (2009). Attenuated Total Reflectance FT-IR Imaging and Quantitative Energy Dispersive-electron Probe X-ray Microanalysis Techniques for Single Particle Analysis Of Atmospheric Aerosol Particles. Anal. Chem. 81 (16): 6695-6707.
    • Schwarzmeier, K., Knauer, M., Ivleva, N.P., Niessner, R., and Haisch, C. (2013). Bioaerosol Analysis Based on a Label-free Microarray Readout Method Using Surface-enhanced Raman Scattering. Anal. Bioanal. Chem. 405 (16) (June): 5387-92.
    • Schweiger, G. (1990). Raman Scattering on Single Aerosol Particles and on Flowing Aerosols: a Review. J. Aerosol Sci. 21 (4): 483-509.
    • Simeonova, P.P. and Erdely, A. (2009) Engineered Nanoparticle Respiratory Exposure and Potential Risks for Cardiovascular Toxicity: Predictive Tests and Biomarkers. Inhal. Toxicol. 21 Suppl 1, no. April (July 2009): 68-73.
    • Smijs, T.G., and Pavel, S. (2011). Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreens: Focus on Their Safety and Effectiveness. Nan. Sci. Appl. 95-112.
    • Sobanska, S., Falgayrac, G., Laureyns, J. and Brémard, C. (2006). Chemistry at Level of Individual Aerosol Particle Using Multivariate Curve Resolution of Confocal Raman Image. Spectrochim. Acta A. 64 (5) (August): 1102-9.
    • Sobanska, S., Hwang, H., Choël, M., Jung, H.-J., Eom, H.-J., Kim, H., Barbillat, J. and Ro, C.-U. (2012). Investigation of the Chemical Mixing State of Individual Asian Dust Particles by the Combined Use of Electron Probe X-ray Microanalysis and Raman Microspectrometry. Anal. Chem. 84 (7) (April 3): 3145-54.
    • Sobanska, S., Falgayrac, G., Rimetz-Planchon, J., Perdrix, E., Brémard, C., and Barbillat, J. (2014). "Resolving the internal structure of individual atmospheric aerosol particle by the combination of Atomic Force Microscopy, ESEM-EDX, Raman and ToF-SIMS imaging". Microchemical Journal, 114(May), 89-98.
    • Song, Y.-C., Ryu, J., Malek, M.A., Jung, H.-J. and Ro, C.-U. (2010). Chemical Speciation of Individual Airborne Particles by the Combined Use of Quantitative Energy-Dispersive Electron Probe X-ray Microanalysis and Attenuated Total Refelction Fourier TransformInfrared Imaging Techniques. Anal. Chem. 82 (19): 7987-7998.
    • Song, Y.-C., Eom, H.-J., Jung, H.-J., Malek, M.A., Kim, H.K., Geng, H. and Ro, C.-U. (2013). Investigation of Aged Asian Dust Particles by the Combined Use of Quantitative ED-EPMA and ATR-FTIR Imaging. Atmos. Chem. Phys. 13 (6) (March 27): 3463-3480.
    • Stefaniak, E.A., Worobiec, A., Potgieter-Vermaak, S., Alsecz, A., Török, S. and Grieken, R.V. (2006). Molecular and Elemental Characterisation of Mineral Particles by Means of Parallel micro-Raman Spectrometry and Scanning Electron Microscopy/Energy Dispersive X-ray Analysis. Spectrochim. Acta B. 61 (7) (July): 824-830.
    • Tripathi, A., Jabbour, R.E., Guicheteau, J.A., Christesen, S.D., Emge, D.K., Fountain, A.W., Bottiger, J.R., Emmons, E.D. and Snyder, A.P. (2009). Bioaerosol Analysis with Raman Chemical Imaging Microspectroscopy. Anal. Chem. 81 (16) (August 15): 6981-90.
    • Vandebriel, R.J., and De Jong, W.H. (2012). A Review of Mammalian Toxicity of ZnO Nanoparticles. Nan. Sci. Appl. 5 (2012): 61-71.
    • Vehring, R. (1998). Linear Raman Spectroscopy on Aqueous Aerosols: Influence of Nonlinear Effects on Detection Limits. J. Aerosol Sci. 29 (1-2) (January): 65-79.
    • Vehring, R., Aardahl, C.L., Schweiger, G. and Davis, E.J. (1998). The Characterization of Fine Particles Originating from an Uncharged Aerosol: Size Dependence and Detection Limits for Raman Analysis. J. Aerosol Sci. 29 (9) (October): 1045-1061.
    • Worobiec, A., Potgieter-Vermaak, S., Brooker, A., Darchuk, L., Stefaniak, E. and Grieken, R.V. (2010). Interfaced SEM/EDX and micro-Raman Spectrometry for Characterisation of Heterogeneous Environmental Particles - Fundamental and Practical Challenges. Microchem. J. 94 (1) (January): 65-72.
    • Yang, W., Peters, J.I. and Williams, R.O. (2008). Inhaled Nanoparticles-A Current Review. Int. J. Pharm. 356 (1-2): 239-4.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article