LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Croke, Sarah (2015)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: QC

Classified by OpenAIRE into

ACM Ref: TheoryofComputation_GENERAL
We discuss the prospect of PT -symmetric Hamiltonians finding applications in quantum information\ud science, and conclude that such evolution is unlikely to provide any benefit over existing\ud techniques. Although it has been known for some time that PT -symmetric quantum theory, when\ud viewed as a unitary theory, is exactly equivalent to standard quantum mechanics, proposals continue\ud to be put forward for schemes in which PT -symmetric quantum theory can outperform standard\ud quantum theory. The most recent of these is the suggestion to use PT -symmetric Hamiltonians\ud to perform exponentially fast database search, a task known to be impossible with a quantum\ud computer. Further, such a scheme has been shown to apparently produce effects in conflict with\ud fundamental information-theoretic principles, such as the impossibility of superluminal information\ud transfer, and the invariance of entanglement under local operations. In this paper we propose three\ud inequivalent experimental implementations of PT -symmetric Hamiltonians, with careful attention\ud to the resources required to realise each such evolution. Such an operational approach allows us to\ud resolve these apparent conflicts, and evaluate fully schemes proposed in the literature for faster time\ud evolution and state discrimination.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] J. von Neumann, Math. Ann. 102, 49 (1930).
    • [2] J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).
    • [3] T. F. Jordan, Linear Operators for Quantum Mechanics (Wiley, New York, 1979).
    • [4] P. Lax, Functional Analysis (Wiley-Interscience, New York, 2002).
    • [5] H. Feshbach, Ann. Phys. 5, 357 (1958).
    • [6] M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).
    • [7] M. Jakob and S. Stenholm, Phys. Rev. A 70, 012104 (2004).
    • [8] I. Rotter, J. Phys. A 42, 153001 (2009).
    • [9] F. G. Scholtz, H. B. Geyer, and F. J. W. Hahne, Ann. Phys. 213, 74 (1992).
    • [10] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002).
    • [11] A. Mostafazadeh, J. Math. Phys. 43, 2814 (2002).
    • [12] A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002).
    • [13] C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89, 270401 (2002).
    • [14] C. M. Bender, D. C. Brody, and H. F. Jones, Am. J. Phys. 71, 1095 (2003).
    • [15] A. Mostafazadeh, J. Phys. A: Math. Gen. 36, 7081 (2003).
    • [16] A. Mostafazadeh, Int. J. Geom. Methods Mod. Phys. 7, 1191 (2010).
    • [17] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
    • [18] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
    • [19] C. M. Bender, S. Boettcher, and P. N. Meisenger, J. Math. Phys. 40, 2201 (1999).
    • [20] C. M. Bender, J.-H. Chen, and K. A. Milton, J. Phys. A: Math. Gen. 39, 1657 (2006).
    • [21] A. Mostafazadeh, arXiv:quant-ph/0310164.
    • [22] C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 92, 119902(E) (2004).
    • [23] C. M. Bender, J. Brod, A. Refig, and M. E. Reuter, J. Phys. A 37, 10139 (2004).
    • [24] C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister, Phys. Rev. Lett. 98, 040403 (2007).
    • [25] C. M. Bender, D. C. Brody, J. Caldeira, U. Gu¨nther, B. K. Meister, and B. F. Samsonov, Philos. Trans. R. Soc. A 371, 20120160 (2013).
    • [26] J. Anandan and Y. Aharonov, Phys. Rev. Lett. 65, 1697 (1990).
    • [27] N. Margolus and L. B. Levitin, Physica D 120, 188 (1998).
    • [28] S. M. Barnett and E. Andersson, Phys. Rev. A 65, 044307 (2002).
    • [29] L. K. Grover, in Proceedings of the 28th Annual ACM Symposium on Theory of Computing (ACM, New York, 1996), p. 212.
    • [30] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, SIAM J. Comput. 26, 1510 (1997).
    • [31] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, Fortschr. Phys. 46, 493 (1998).
    • [32] C. Zalka, Phys. Rev. A 60, 2746 (1999).
    • [33] A. Mostafazadeh, Phys. Rev. Lett. 99, 130502 (2007).
    • [34] D. Martin, arXiv:quant-ph/0701223.
    • [35] I. Rotter, J. Phys. A: Math. Theor. 40, 14515 (2007).
    • [36] H. B. Geyer, W. D. Heiss, and F. G. Scholtz, arXiv:0710.5593.
    • [37] P. E. G. Assis and A. Fring, J. Phys. A: Math. Theor. 41, 244002 (2008).
    • [38] U. Gu¨nther and B. F. Samsonov, Phys. Rev. A 78, 042115 (2008).
    • [39] U. Gu¨nther and B. F. Samsonov, Phys. Rev. Lett. 101, 230404 (2008).
    • [40] A. Mostafazadeh, Phys. Rev. A 79, 014101 (2009).
    • [41] C. M. Bender and D. C. Brody, Lect. Notes Phys. 789, 341 (2009).
    • [42] A. I. Nesterov, SIGMA 5, 069 (2009).
    • [43] A. I. Nesterov, Phys. Lett. A 373, 3629 (2009).
    • [44] R. Uzdin, U. Gu¨nther, S. Rahav, and N. Moiseyev, J. Phys. A: Math. Theor. 45, 415304 (2012).
    • [45] Y.-C. Lee, M.-H. Hsieh, S. T. Flammia, and R.-K. Lee, Phys. Rev. Lett. 112, 130404 (2014).
    • [46] A. Shimony, in Proceedings of the International Symposium: Foundations of Quantum Mechanics in the Light of New Technology (Physical Society of Japan, Tokyo, 1984), pp. 225-230.
    • [47] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. VolatierRavat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).
    • [48] C. E. Ru¨ter, K. G. Makris, R. El-Ganainy, D. N. Christodoulidea, M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010).
    • [49] L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, Science 333, 729 (2011).
    • [50] J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Phys. Rev. A 84, 040101 (2011).
    • [51] C. M. Bender, B. K. Berntson, D. Parker, and E. Samuel, Am. J. Phys. 81, 173 (2013).
    • [52] C. Zheng, L. Hao, and G. L. Long, Philos. Trans. R. Soc. A 371, 20120053 (2013).
    • [53] C. M. Bender, M. DeKieviet, and S. P. Klevansky, Philos. Trans. R. Soc. A 371, 20120523 (2013).
    • [54] M. H. Stone, Proc. Natl. Acad. Sci. USA 16, 172 (1930).
    • [55] M. H. Stone, Ann. Math. 33, 643 (1932).
    • [56] A. Mostafazadeh, Philos. Trans. R. Soc. A 371, 20120050 (2013).
    • [57] H. F. Jones, Phys. Rev. D 76, 125003 (2007).
    • [58] H. F. Jones, Phys. Rev. D 78, 065032 (2008).
    • [59] C. M. Bender and H. F. Jones, J. Phys. A: Math. Theor. 41, 244006 (2008).
    • [60] U. Gu¨nther, I. Rotter, and B. F. Samsonov, J. Phys. A 40, 8815 (2007).
    • [61] C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister, arXiv:0804.3487.
    • [62] H. Ramezani, J. Schindler, F. M. Ellis, U. Gu¨nther, and T. Kottos, Phys. Rev. A 85, 062122 (2012).
    • [63] A. Chefles, Contemp. Phys. 41, 401 (2000).
    • [64] S. M. Barnett and S. Croke, Adv. Opt. Photon. 1, 238 (2009).
    • [65] J. Bergou, J. Mod. Opt. 57, 160 (2010).
    • [66] I. D. Ivanovic, Phys. Lett. A 123, 257 (1987).
    • [67] D. Dieks, Phys. Lett. A 126, 303 (1988).
    • [68] A. Peres, Phys. Lett. A 128, 19 (1988).
    • [69] G. Jaeger and A. Shimony, Phys. Lett. A 197, 83 (1995).
    • [70] A. K. Pati, arXiv:1404.6166.
    • [71] G. Scolarici and L. Solombrino, J. Phys. A 42, 055303 (2009).
    • [72] B. Schumacher and M. D. Westmoreland, Found. Phys. 42, 926 (2012).
    • [73] B. Huttner, A. Muller, J. D. Gautier, H. Zbinden, and N. Gisin, Phys. Rev. A 54, 3783 (1996).
    • [74] S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, Oxford, UK, 1997).
    • [75] J. Gong and Q. Wang, J. Phys. A 46, 485302 (2013).
    • [76] A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, Dordrecht, 1995).
    • [77] S. M. Barnett, Quantum Information (Oxford University Press, Oxford, UK, 2009).
    • [78] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).
    • [79] R. B. M. Clarke, A. Chefles, S. M. Barnett, and E. Riis, Phys. Rev. A 63, 040305(R) (2001).
    • [80] D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 81, 3992 (1998).
    • [81] J. Combes, C. Ferrie, Z. Jiang, and C. M. Caves, Phys. Rev. A 89, 052117 (2014).
    • [82] P. Shor, in Proceedings of the 35th Annual Sympium on the Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society Press, Los Alamitos, CA, 1994), pp. 124-134.
    • [83] P. Shor, SIAM J. Comput. 26, 1484 (1997).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article