LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ma, Lifu (2013)
Languages: English
Types: Unknown
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Chemical Physics
Metal dication-ligand sandwich complexes have attracted intense attention recently for their widely use in catalysis, biochemistry and material science. The experimental techniques developed by our group have allowed forming, confining, cooling and investigating a wide range of metal dication complexes in the gas phase. In this thesis, the ultraviolet photofragmentation studies of Pb(II), Cu(II) and Ca(II) sandwich complexes with aromatic ligands are performed using a hybrid quadrupole ion trap instrument, followed by DFT/TDDFT calculations. The experimental results indicate that the complexes are capable of yielding structured, sometimes conformation resolved, UV spectra. The spectra of metal dication-benzene complexes exhibit features in the wavelength range 220-270 nm and a big raise as the wavelength decreases. The lead dication-bis(toluene) complex spectrum shows some well-resolved features arising from different conformers. The theory suggests that all of these complexes have excitations including significant contributions from the metal-based orbital. The adiabatic TDDFT methodology is able to give reasonable agreement between the calculated excitations and the experimental spectra for the close-shell complexes. But for some open-shell complexes, the calculated excitations are spin contaminated, which need to be discarded or corrected in the future. The degree of spin contamination for selected excitations is qualified by calculating the values. For lead and calcium open-shell complexes, most of the excitations that can match the experimental features can be trusted. However, for the copper open-shell complex, only three states are ~90% doublet in their character which are responsible for some excitations that can match the spectra. Challenges such as developing the theory to describe the open-shell system and refining the experimental techniques to improve the resolution of the spectra, still remain.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Purusottam jena, A. W. C. J., nanoclusters: a bridge across disciplines, chapter 4: Cluster structures: bridging experiment and theory. Elsevier: Amsterdam, 2010.
    • Stace, A. J.,The Journal of Physical Chemistry A 2002, 106, 7993-8005.
    • Stace, A.,Science (Washington, DC, U. S.) 2001, 294, 1292-1293.
    • Johnston, R. L., Atomic and molecular clusters. Taylor & Francis: London and New York, 2002.
    • (a) Akibo-Betts, G.; Barran, P. E.; Puskar, L.; Duncombe, B.; Cox, H.; Stace, A. J.,J. Am. Chem. Soc. 2002, 124, 9257-9264; (b) Cox, H.; Akibo-Betts, G.; Wright, R. R.; Walker, N. R.; Curtis, S.; Duncombe, B.; Stace, A. J.,J. Am.
    • Chem. Soc. 2003, 125, 233-242; (c) Puskar, L.; Cox, H.; Goren, A.; Aitken, G.
    • D. C.; Stace, A. J.,Faraday Discuss. 2003, 124, 259-273; (d) Cox, H.; Stace, A. J.,J. Am. Chem. Soc. 2004, 126, 3939-3947; (e) Puskar, L.; Barran, P. E.; Duncombe, B. J.; Chapman, D.; Stace, A. J.,J. Phys. Chem. A 2005, 109, 273- 282; (f) Puskar, L.; Tomlins, K.; Duncombe, B.; Cox, H.; Stace, A. J.,J. Am.
    • Chem. Soc. 2005, 127, 7559-7569.
    • Stephens W. E.,Phys. Rev. 1946, 69, 691.
    • W. C. Wiley, I. H. M.,Review of Scientific Instruments 1955, 26, 1150.
    • C.) 1996, 96, 2239-2314; (b) Feraudi, G. J., elements of inorganic photochemistry. Wiley-Interscience Publication: New York, 1988.
    • Lever, A. B. P., Inorganic Electronic Spectroscopy. Elsevier: Amsterdam, The Netherlands, 1984.
    • Stewart, H.; Wu, G.; Ma, L.; Barclay, M.; Vieira, A. D.; King, A.; Cox, H.; Stace, A. J.,J. Phys. Chem. A 2011, 115, 6948-6960.
    • Kohler, M.; Leary, J. A.,J. Am. Soc. Mass Spectrom. 1997, 8, 1124-1133.
    • (a) Blades, A. T.; Jayaweera, P.; Ikonomou, M. G.; Kebarle, P.,Int. J. Mass Spectrom. Ion Processes 1990, 102, 251-67; (b) Spence, T. G.; Trotter, B. T.; Posey, L. A.,J. Phys. Chem. A 1998, 102, 7779-7786.
    • (a) Stace, A. J.; Walker, N. R.; Firth, S.,J. Am. Chem. Soc. 1997, 119, 10239- 10240; (b) Walker, N. R.; Firth, S.; Stace, A. J.,Chem. Phys. Lett. 1998, 292, 125-132.
    • (a) Lustig, D. A.; Lubman, D. M.,Review of Scientific Instruments 1991, 62, 957-962; (b) Haefliger, O. P.; Zenobi, R.,Review of Scientific Instruments 1998, 69, 1828-1832.
    • (a) Cable, J. R.; Tubergen, M. J.; Levy, D. H.,J. Am. Chem. Soc. 1989, 111, 9032-9; (b) Pang, H. M.; Lubman, D. M.,Anal. Chem. 1989, 61, 777-9; (c) Li, L.; Hogg, A. M.; Wang, A. P. L.; Zhang, J. Y.; Nagra, D. S.,Anal. Chem.
    • Willey, K. F.; Yeh, C. S.; Robbins, D. L.; Duncan, M. A.,J. Phys. Chem. 1992, 96, 9106-11.
    • Plowright, R. J.; Ayles, V. L.; Watkins, M. J.; Gardner, A. M.; Wright, R. R.; Wright, T. G.; Breckenridge, W. H.,J Chem Phys 2007, 127, 204308.
    • Duncombe, B. J.; Puskar, L.; Wu, B.; Stace, A. J.,Can. J. Chem. 2005, 83, 1994-2004.
    • Chen, X.; Wu, G.; Wu, B.; Duncombe, B. J.; Stace, A. J.,J. Phys. Chem. B 2008, 112, 15525-15528.
    • J.,Chem. Commun. (Cambridge, U. K.) 2009, 4088-4090; (b) Chen, X.; Stace, A. J.,Chem. Commun. (Cambridge, U. K.) 2012, 48, 10292-10294.
    • Kebarle, P.,Annu. Rev. Phys. Chem. 1977, 28, 445-76.
    • ed.; Elsevier: Amsterdam, 1973.
    • Stace, A. J.,J. Phys. Chem. A 2002, 106, 7993-8005.
    • Cox, H.; Stace, A. J.,Int. Rev. Phys. Chem. 2010, 29, 555-588.
    • Mizukami, S.; Okada, S.; Kimura, S.; Kikuchi, K.,Inorg. Chem. 2009, 48, 7630-7638.
    • Duncan, M. A.,Annu. Rev. Phys. Chem. 1997, 48, 69-93.
    • Keesee, R. G.; Castleman, A. W., Jr.,J. Phys. Chem. Ref. Data 1986, 15, 1011- 71.
    • (a) Spence, T. G.; Trotter, B. T.; Burns, T. D.; Posey, L. A.,J. Phys. Chem. A 1998, 102, 6101-6106; (b) Spence, T. G.; Trotter, B. T.; Posey, L. A.,J. Phys.
    • Chem. A 1998, 102, 7779-7786.
    • (a) Thompson, C. J.; Aguirre, F.; Husband, J.; Metz, R. B.,J. Phys. Chem. A 2000, 104, 9901-9905; (b) Thompson, C. J.; Faherty, K. P.; Stringer, K. L.; Metz, R. B.,Phys Chem Chem Phys 2005, 7, 814-8.
    • (Cambridge, U. K.) 2008, 4153-4155.
    • Wu, G.; Stewart, H.; Lemon, F. D.; Cox, H.; Stace, A. J.,Mol. Phys. 2010, 108, 1199-1208.
    • March, R. E.,Journal of Mass Spectrometry 1997, 32, 351-369.
    • R. March, J. F. J. T., Quadrupole Ion Trap Mass Spectroscopy. Willy: 2005.
    • W. Paul, O. O., E. Fischer, , Forschungsberichte des Wirtschaft und Verkehrministeriums Nordrhein Westfalen,. Koln and Opladen: Westdeutscher Verlag, 1958; Vol. No. 415.
    • Fischer, E.,Z. Phys. 1959, 156, 1-26.
    • Rettinghaus, V. v. G.,Z. Angew. Phys. 1967, 22, 321-326.
    • D. C. Burnham, D. K.,Bull. Am. Phys. Soc. Ser. 1968, II.
    • J. E. P Syka, W. J. F., Jr. Quadrupole Fourier transform mass spectrometer and method. 1988.
    • M. Nappi, V. F., M. Soni, R. G. Cooks,Int. J. Mass Spectrom. 1998, 177, 91- 104.
    • (a) Dehmelt, H. G.,Adv. At. Mol. Phys. 1967, 3, 53-72; (b) Dehmelt, H.
    • G.,Adv. At. Mol. Phys. 1969, 5, 109-154.
    • (a) P. H. Dawson, N. R. W.,J. Vac. Sci. Technol. 1968, 5, 11-18; (b) P. H.
    • Dawson, N. R. W.,J. Vac. Sci. Technol. 1968, 5, 11-18.
    • Dawson, P. H.; Lambert, C.,International Journal of Mass Spectrometry and Ion Physics 1975, 16, 269-280.
    • W. Paul, H. S. Aparatus for separating charged particles of different specific charges. 1956.
    • Jonscher, K. R.; Yates, J. R., 3rd,Anal Biochem 1997, 244, 1-15.
    • Wuerker, R. F.; Shelton, H.; Langmuir, R. V.,Journal of Applied Physics 1959, 30, 342-349.
    • G.,International Journal of Mass Spectrometry and Ion Processes 1997, 161, 77-85.
    • Wu, G.; Chapman, D.; Stace, A. J.,Int. J. Mass Spectrom. 2007, 262, 211-219.
    • Bethe,Ann. physik 1929, 3, 133.
    • Van Vleck, J. H.,Physical Review 1932, 41, 208-215.
    • Figgis, B. N., Introduction to ligand fields. Interscience publishers a division of John Wiley & Sons: New York, London. Sydney, 1961.
    • Isci, H.; Mason, W. R.,Inorg. Chem. 1983, 22, 2266-72.
    • Chem. 1993, 97, 9607-12.
    • Suzuki, M.; Nishida, Y.,Inorg. Chim. Acta 1980, 44, L9-L11.
    • Tennent, D. L.; McMillin, D. R.,J. Am. Chem. Soc. 1979, 101, 2307-11.
    • A 1997, 101, 1081-1092.
    • Geoffroy, G. L.; Wrighton, M. S., Organometallic Photochemistry. Academic Press: 1979; p 352 pp.
    • Cotton, F. A., Wilkinson, G. , Advanced Inorganic Chemistry. Wiley: London, 1988.
    • (a) Kim, S. K.; Bernstein, E. R.,J. Phys. Chem. 1990, 94, 3531-9; (b) Yamazaki, I.; Baba, H.,J. Chem. Phys. 1977, 66, 5826-7.
    • Wu, G.; Chapman, D.; Stace, A. J.,International Journal of Mass Spectrometry 2007, 262, 211-219.
    • Aitken, G. D. C.; Cox, H.; Stace, A. J.,J. Phys. Chem. A 2012, 116, 3035- 3041.
    • Laboratories, C. R. vapor pressure curves for the more common elements (cont.). After Honig (Ref. 5:14).
    • Wolfgang Paul, H. S. Apparatus for separating charged particles of different specific charges. 1960.
    • Feistel, H.,scientific American 1973, 228, 15-23.
    • Wu, G.; Stace, A. J.,Chemical Physics Letters 2005, 412, 1-4.
    • LTD, Mullard, Mullard Technical Handbook. 1985.
    • Orazio, S., Principles of Lasers. 4th Edition ed.; Springer: 1998.
    • O. Svelto, D. C. H., Principles of Lasers, . New York, 1989.
    • Meyers, R. A., Encyclopaedia of Lasers and Optical Technology Ed. . New York, 1991.
    • GrÄFenstein, J.; Cremer, D.,Molecular Physics 2001, 99, 981-989.
    • Jensen, F., Introduction to Computational chemistry. second edition ed.; John Wiley & sons, Ltd: 2007.
    • Thomas, L. H.,Mathematical Proceedings of the Cambridge Philosophical Society 1927, 23, 542-548.
    • Dirac, P. A. M.,Proc. Camb. Phil. Soc. 1930, 26, 376.
    • Teller, E.,Reviews of Modern Physics 1962, 34, 627-631.
    • Kohn, P. H. a. W.,Physical Review B 1964, 136, B864.
    • 2. Lifu Ma, Joseph Koka, Hazel Cox, A. J. Stace, A Gas Phase UV Spectrum of a Cu(II)-Bis(benzene) Sandwich Complex: Experiment and Theory, J. Chem. Phys., submitted.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article