Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhou, Yi
Languages: English
Types: Doctoral thesis
Previous research has shown that the naturally occurring reactive electrophilic species (RES), 12-oxophytodienoic acid (OPDA), not only serves as a precursor for jasmonic acid but is also a potent antifungal compound. However, both the low amount present in plants and the multistep synthesis required to produce this compound on a scale viable for agrochemical use currently limits its practical value. The aim of this research was to generate a range of molecular mimics of OPDA with a minimum number of synthetic steps and screen for antifungal activity. Synthetic 4-octyl-cyclopentenone containing the cyclopentenone ring and an eight carbon alkyl chain was found to show the highest in vitro antifungal activity against C. herbarum and B. cinerea with minimum inhibition concentration (MIC) of 100-200µM. This indicates that structurally simplified 4-octyl-cyclopentenone can be successfully synthesised to mimic the antifungal activity of OPDA against specific fungal strains. Application of 4-octyl-cyclopentenone could act as surfactant by disrupting and disorganising the lipid membrane non-specifically, resulting in the leakage of potassium ions, which was the proposed mode of action of this compound. However, the sensitivity of fungi to this compound is not correlated to the lipid composition of fungal spores. (E)-2-alkenals were also studied for their antimicrobial activity and (E)-2-undecenal was found to have the highest antimicrobial activity against a range of pathogens. The hydrophilic moiety (the a,ß-unsaturated carbonyl group), common to both (E)-2-undecenal and 4-octyl-cyclentenone is essential to their bioactivity, and the hydrophobic moiety plays an important role in their antimicrobial activities. 4-Octyl-cyclopentenone showed no visible toxicity to the test plant, Arabidopsis thaliana, suggesting that its high antifungal activity against Botrytis and Cladosporium could be exploited for commercialisation as a new generation of agrochemical.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Zhang, Y. (2006). Development of World Novel Agrochemicals, (Beijing: Chinese Chemical Industry Press).
    • Hewitt, H.G. (1998). Fungicides in Crop Protection (Oxford: Oxford University Press ).
    • Copping, L.G., and Duke, S.O. (2007). Natural products that have been used commercially as crop protection agents. Pest Management Science 63, 524-554.
    • Gullino, M.L., Leroux, P., and Smith, C.M. (2000). Uses and challenges of novel compounds for plant disease control. Crop Protection 19, 1-11.
    • Borrás-Hidalgo, O. (2004). Basic insight in plant pathogen interaction.
    • Biotecnología Aplicada 21, 1-4.
    • Selitrennikoff, C.P. (2001). Antifungal proteins. Applied and Environmental Microbiology 67, 2883-2894.
    • (2008). Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi.
    • Bioresource Technology 99, 6266-6270.
    • Prashar, A., Hili, P., Veness, R.G., and Evans, C.S. (2003). Antimicrobial action of palmarosa oil (Cymbopogon martinii) on Saccharomyces cerevisiae.
    • Phytochemistry 63, 569-575.
    • Avis, T.J., and Belanger, R.R. (2001). Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Applied and Environmental Microbiology 67, 956-960.
    • Walters, D., Raynor, L., Mitchell, A., Walker, R., and Walker, K. (2004).
    • Mycopathologia 157, 87-90.
    • Prost, I., Dhondt, S., Rothe, G., Vicente, J., Rodriguez, M.J., Kift, N., Carbonne, F., Griffiths, G., Esquerre-Tugaye, M.T., Rosahl, S., et al. (2005). Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiology 139, 1902-1913.
    • Harborne, J.B. (1999). The comparative biochemistry of phytoalexin induction in plants. Biochemical Systematics and Ecology 27, 335-367.
    • Heldt, H.-W. (2005). Plant Biochemistry Third Edition Edition, (London, Oxford, Boston, New York and San Diego: Elsevier Academic Press).
    • Thomma, B., Eggermont, K., Penninckx, I., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A., and Broekaert, W.F. (1998). Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences of the United States of America 95, 15107-15111.
    • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and Hunt, M.D. (1996). Systemic acquired resistance. Plant Cell 8, 1809-1819.
    • Smith, J.L., De Moraes, C.M., and Mescher, M.C. (2009). Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Management Science 65, 497-503.
    • Weber, H. (2002). Fatty acid-derived signals in plants. Trends in Plant Science 7, 217-224.
    • Landgraf, P., Feussner, I., Hunger, A., Scheel, D., and Rosahl, S. (2002).
    • Systemic accumulation of 12-oxo-phytodienoic acid in SAR-induced potato plants. European Journal of Plant Pathology 108, 279-283.
    • Reinbothe, C., Springer, A., Samol, I., and Reinbothe, S. (2009). Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS Journal 276, 4666-4681.
    • Thoma, I., Krischke, M., Loeffler, C., and Mueller, M.J. (2004). The isoprostanoid pathway in plants. Chemistry and Physics of Lipids 128, 135-148.
    • Christie, W.W. (2010). What is a lipid? (Dundee: Scottish Crop Research Institute (and MRS Lipid Analysis Unit)).
    • Byers, D.M., and Gong, H.S. (2007). Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire 85, 649-662.
    • Frank D. Gunstone, J.L.H., Albert J. Dijkstra (2007). The Lipid Handbook, 3rd Edition, (Boca Raton: CRC Press).
    • Michael Cox, D.L.N. (2005). Lehninger Principles of Biochemistry, 4th Edition, (New York: W. H. Freeman and Company).
    • Michael I. Gurr , J.L.H., Keith N. Frayn (2002). Lipid Biochemistry: An Introduction, 5th edition Edition, (Oxford: Wiley-Blackwell).
    • Jacques Fantini, N.G., Radhia Mahfoud and Nouara Yahi (2002). Expert Reviews in Molecular Medicine, (Cambridge: Cambridge University Press).
    • Tuteja, N., and Sopory, S.K. (2008). Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3, 525-536.
    • Blee, E. (1998). Phytooxylipins and plant defense reactions. Progress in Lipid Research 37, 33-72.
    • Blee, E. (2002). Impact of phyto-oxylipins in plant defense. Trends in Plant Science 7, 315-321.
    • Straus, D.S., and Glass, C.K. (2001). Cyclopentenone prostaglandins: New insights on biological activities and cellular targets. Medicinal Research Reviews 21, 185-210.
    • Montuschi, P., Barnes, P., and Roberts, L.J. (2007). Insights into oxidative stress: The isoprostanes. Current Medicinal Chemistry 14, 703-717.
    • Howe, G.A., and Schilmiller, A.L. (2002). Oxylipin metabolism in response to stress. Current Opinion in Plant Biology 5, 230-236.
    • Mueller, M.J., Mene-Saffrane, L., Grun, C., Karg, K., and Farmer, E.E. (2006).
    • Oxylipin analysis methods. Plant Journal 45, 472-489.
    • Gobel, C., and Feussner, I. (2009). Methods for the analysis of oxylipins in plants. Phytochemistry 70, 1485-1503.
    • Mosblech, A., Feussner, I., and Heilmann, I. (2009). Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiology and Biochemistry 47, 511-517.
    • Koeduka, T., Matsui, K., Hasegawa, M., Akakabe, Y., and Kajiwara, T. (2005).
    • Rice fatty acid alpha-dioxygenase is induced by pathogen attack and heavy metal stress: activation through jasmonate signaling. Journal of Plant Physiology 162, 912-920.
    • Hamberg, M., Sanz, A., Rodriguez, M.J., Calvo, A.P., and Castresana, C. (2003).
    • Journal of Biological Chemistry 278, 51796-51805.
    • Porta, H., and Rocha-Sosa, M. (2002). Plant lipoxygenases. Physiological and molecular features. Plant Physiology 130, 15-21.
    • Liavonchanka, A., and Feussner, N. (2006). Lipoxygenases: Occurrence, functions and catalysis. Journal of Plant Physiology 163, 348-357.
    • Andreou, A., and Feussner, I. (2009). Lipoxygenases - Structure and reaction mechanism. Phytochemistry 70, 1504-1510.
    • Christie, W.W. (2006). Plant oxylipins: Chemistry and biology. (Dundee: Scottish Crop Research Institute (and MRS Lipid Analysis Unit)).
    • Laudert, D., and Weiler, E.W. (1998). Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant Journal 15, 675-684.
    • (1997). Analysis of 12-oxo-phytodienoic acid enantiomers in biological samples by capillary gas chromatography mass spectrometry using cyclodextrin stationary phases. Analytical Biochemistry 246, 211-217.
    • Theodoulou, F.L., Job, K., Slocombe, S.P., Footitt, S., Holdsworth, M., Baker, A., Larson, T.R., and Graham, I.A. (2005). Jasmonoic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiology 137, 835-840.
    • Wasternack, C., Stenzel, I., Hause, B., Hause, G., Kutter, C., Maucher, H., Neumerkel, J., Feussner, I., and Miersch, O. (2006). The wound response in tomato - Role of jasmonic acid. Journal of Plant Physiology 163, 297-306.
    • Leon, J., and Sanchez-Serrano, J.J. (1999). Molecular biology of jasmonic acid biosynthesis in plants. Plant Physiology and Biochemistry 37, 373-380.
    • Schaller, F., and Weiler, E.W. (1997). Enzymes of octadecanoid biosynthesis in plants - 12-oxo-phytodienoate 10,11-reductase. European Journal of Biochemistry 245, 294-299.
    • Buseman, C.M., Tamura, P., Sparks, A.A., Baughman, E.J., Maatta, S., Zhao, J., Roth, M.R., Esch, S.W., Shah, J., Williams, T.D., et al. (2006). Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiology 142, 28-39.
    • Kourtchenko, O., Andersson, M.X., Hamberg, M., Brunnstrom, A., Gobel, C., McPhail, K.L., Gerwick, W.H., Feussner, I., and Ellerstrom, M. (2007).
    • Oxo-phytodienoic acid-containing galactolipids in Arabidopsis: Jasmonate signaling dependence. Plant Physiology 145, 1658-1669.
    • Stelmach, B.A., Muller, A., Hennig, P., Gebhardt, S., Schubert-Zsilavecz, M., and Weiler, E.W. (2001). A novel class of oxylipins, sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. Journal of Biological Chemistry 276, 12832-12838.
    • Boettcher, C., and Pollmann, S. (2009). Plant oxylipins: Plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties. FEBS Journal 276, 4696-4704.
    • Wasternack, C. (2007). Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development.
    • Annals of Botany 100, 681-697.
    • Turner, J.G., Ellis, C., and Devoto, A. (2002). The jasmonate signal pathway.
    • Plant Cell 14, S153-S164.
    • Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y., and Howe, G.A. (2008).
    • COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proceedings of the National Academy of Sciences of the United States of America 105, 7100-7105.
    • Schilmiller, A.L., Koo, A.J.K., and Howe, G.A. (2007). Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiology 143, 812-824.
    • Farmer, E.E. (2001). Surface-to-air signals. Nature 411, 854-856.
    • Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S., and Choi, Y.D. (2001). Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proceedings of the National Academy of Sciences of the United States of America 98, 4788-4793.
    • Thomma, B., Eggermont, K., Broekaert, W.F., and Cammue, B.P.A. (2000).
    • Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiology and Biochemistry 38, 421-427.
    • Stintzi, A., Weber, H., Reymond, P., Browse, J., and Farmer, E.E. (2001). Plant defense in the absence of jasmonic acid: The role of cyclopentenones.
    • Proceedings of the National Academy of Sciences of the United States of America 98, 12837-12842.
    • Farmer, E.E. (2007). Plant biology - Jasmonate perception machines. Nature 448, 659-660.
    • Almeras, E., Stolz, S., Vollenweider, S., Reymond, P., Mene-Saffrane, L., and Farmer, E.E. (2003). Reactive electrophile species activate defense gene expression in Arabidopsis. Plant Journal 34, 202-216.
    • Stefan Mueller, B.H., Katharina Dueckershoff, Thomas Roitsch, Markus Krischke, Martin J. Mueller and Susanne Berger (2008). General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20, 768-785.
    • Taki, N., Sasaki-Sekimoto, Y., Obayashi, T., Kikuta, A., Kobayashi, K., Ainai, T., Yagi, K., Sakurai, N., Suzuki, H., Masuda, T., et al. (2005). 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiology 139, 1268-1283.
    • Raacke, I.C., Mueller, M.J., and Berger, S. (2006). Defects in allene oxide synthase and 12-oxa-phytodienoic acid reductase alter the resistance to Pseudomonas syringae and Botrytis cinerea. Journal of Phytopathology 154, 740-744.
    • Li, C.Y., Schilmiller, A.L., Liu, G.H., Lee, G.I., Jayanty, S., Sageman, C., Vrebalov, J., Giovannoni, J.J., Yagi, K., Kobayashi, Y., et al. (2005). Role of beta-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17, 971-986.
    • Stelmach, B.A., Muller, A., and Weiler, E.W. (1999). 12-oxo-phytodienoic acid and indole-3-acetic acid in jasmonic acid-treated tendrils of Bryonia dioica.
    • Phytochemistry 51, 187-192.
    • Matsui, K. (2006). Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology 9, 274-280.
    • Kubo, I., Fujita, K.I., Kubo, A., Nihei, K.I., and Lunde, C.S. (2003). Modes of antifungal action of (2E)-Alkenals against Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry 51, 3951-3957.
    • Myung, K., Hamilton-Kemp, T.R., and Archbold, D.D. (2006). Biosynthesis of trans-2-hexenal in response to wounding in strawberry fruit. Journal of Agricultural and Food Chemistry 54, 1442-1448.
    • Arroyo, F.T., Moreno, J., Daza, P., Boianova, L., and Romero, F. (2007).
    • Antifungal activity of strawberry fruit volatile compounds against Colletotrichum acutatum. Journal of Agricultural and Food Chemistry 55, 5701-5707.
    • Hamiltonkemp, T.R., McCracken, C.T., Loughrin, J.H., Andersen, R.A., and Hildebrand, D.F. (1992). Effects of some natural volatile compounds on the pathogenic fungal Ternaria alternata and Botrytis cinerea. Journal of Chemical Ecology 18, 1083-1091.
    • Kishimoto, K., Matsui, K., Wawa, R., and Takabayashi, J. (2006). Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis cinerea. Plant Science 170, 715-723.
    • Kishimoto, K., Matsui, K., Ozawa, R., and Takabayashi, J. (2005). Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant and Cell Physiology 46, 1093-1102.
    • Chehab, E.W., Kaspi, R., Savchenko, T., Rowe, H., Negre-Zakharov, F., Kliebenstein, D., and Dehesh, K. (2008). Distinct roles of jasmonates and aldehydes in plant-defense responses. PLoS One 3, e1904.
    • Neri, F., Mari, M., and Brigati, S. (2006). Control of Penicillium expansum by plant volatile compounds. Plant Pathology 55, 100-105.
    • Myung, K., Hamilton-Kemp, T.R., and Archbold, D.D. (2007). Interaction with and effects on the profile of proteins of Botrytis cinerea by C-6 aldehydes.
    • Journal of Agricultural and Food Chemistry 55, 2182-2188.
    • Matsui, K., Minami, A., Hornung, E., Shibata, H., Kishimoto, K., Ahnert, V., Kindl, H., Kajiwara, T., and Feussner, I. (2006). Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber. Phytochemistry 67, 649-657.
    • Fammartino, A., Cardinale, F., Gobel, C., Mene-Saffrane, L., Fournier, J., Feussner, I., and Esquerre-Tugaye, M.T. (2007). Characterization of a divinyl ether biosynthetic pathway specifically associated with pathogenesis in tobacco.
    • Plant Physiology 143, 378-388.
    • Cacas, J.L., Vailleau, F., Davoine, C., Ennar, N., Agnel, J.P., Tronchet, M., Ponchet, M., Blein, J.P., Roby, D., Triantaphylides, C., et al. (2005). The combined action of 9 lipoxygenase and galactolipase is sufficient to bring about programmed cell death during tobacco hypersensitive response. Plant Cell and Environment 28, 1367-1378.
    • Taber, D.F., Morrow, J.D., and Roberts, L.J. (1997). A nomenclature system for the isoprostanes. Prostaglandins 53, 63-67.
    • Parchmann, S., and Mueller, M.J. (1998). Evidence for the formation of dinor isoprostanes E-1 from alpha-linolenic acid in plants. Journal of Biological Chemistry 273, 32650-32655.
    • Imbusch, R., and Mueller, M.J. (2000). Analysis of oxidative stress and wound-inducible dinor isoprostanes F-1 (phytoprostanes F-1) in plants. Plant Physiology 124, 1293-1303.
    • Mene-Saffrane, L., Dubugnon, L., Chetelat, A., Stolz, S., Gouhier-Darimont, C., and Farmer, E.E. (2009). Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis. Journal of Biological Chemistry 284, 1702-1708.
    • Frankel, E.N. (2005). Lipid Oxidation, Second Edition Edition, (Bridgwater: The Oil Press).
    • Mueller, M.J. (1998). Radically novel prostaglandins in animals and plants: the isoprostanes. Chemistry & Biology 5, R323-R333.
    • Durand, T., Bultel-Ponce, V., Guy, A., Berger, S., Mueller, M.J., and Galano, J.-M. (2009). New bioactive oxylipins formed by non-enzymatic free-radical-catalyzed pathways: the phytoprostanes. Lipids 44, 875-888.
    • Krischke, M., Loeffler, C., and Mueller, M.J. (2003). Biosynthesis of 13,14-dehydro-12-oxo-phytodienoic acid and related cyclopentenones via the phytoprostane D-1 pathway. Phytochemistry 62, 351-358.
    • Imbusch, R., and Mueller, M.J. (2000). Formation of isoprostane F-2-like compounds (phytoprostanes F-1) from alpha-linolenic acid in plants. Free Radical Biology and Medicine 28, 720-726.
    • Triantaphylides, C., Krischke, M., Hoeberichts, F.A., Ksas, B., Gresser, G., Havaux, M., Van Breusegem, F., and Mueller, M.J. (2008). Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants.
    • Plant Physiology 148, 960-968.
    • Mueller, M.J. (2003). Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants.
    • Free Radical Research 37, 15-15.
    • Mueller, M.J. (2004). Archetype signals in plants: the phytoprostanes. Current Opinion in Plant Biology 7, 441-448.
    • Karg, K., Dirsch, V.M., Vollmar, A.M., Cracowski, J.L., Laporte, F., and Mueller, M.J. (2007). Biologically active oxidized lipids (phytoprostanes) in the plant diet and parenteral lipid nutrition. Free Radical Research 41, 25-37.
    • Loeffler, C., Berger, S., Guy, A., Durand, T., Bringmann, G., Dreyer, M., von Rad, U., Durner, J., and Mueller, M.J. (2005). B-1-phytoprostanes trigger plant defense and detoxification responses. Plant Physiology 137, 328-340.
    • Iqbal, M., Evans, P., Lledo, A., Verdaguer, X., Pericas, M.A., Riera, A., Loeffler, C., Sinha, A.K., and Mueller, M.J. (2005). Total synthesis and biological activity of 13,14-dehydro-12-oxo-phytodienoic acids (deoxy-J(1)-phytoprostanes).
    • Chembiochem 6, 276-280.
    • Farmer, E.E., and Davoine, C. (2007). Reactive electrophile species. Current Opinion in Plant Biology 10, 380-386.
    • Davoine, C., Falletti, O., Douki, T., Iacazio, G., Ennar, N., Montillet, J.L., and Triantaphylides, C. (2006). Adducts of oxylipin electrophiles to glutathione reflect a 13 specificity of the downstream lipoxygenase pathway in the tobacco hypersensitive response. Plant Physiology 140, 1484-1493.
    • Mueller, M.J., and Berger, S. (2009). Reactive electrophilic oxylipins: Pattern recognition and signalling. Phytochemistry 70, 1511-1521.
    • Ayers, P.W., Parr, R.G., and Pearson, R.G. (2006). Elucidating the hard/soft acid/base principle: A perspective based on half-reactions. Journal of Chemical Physics 124, 194107.
    • Schultz, T.W., Carlson, R.E., Cronin, M.T.D., Hermens, J.L.M., Johnson, R., O'Brien, P.J., Roberts, D.W., Siraki, A., Wallace, K.B., and Veith, G.D. (2006). A conceptual framework for predicting the toxicity of reactive chemicals: modeling soft electrophilicity. Sar and Qsar in Environmental Research 17, 413-428.
    • Chan, K., Poon, R., and O'Brien, P.J. (2008). Application of structure-activity relationships to investigate the molecular mechanisms of hepatocyte toxicity and electrophilic reactivity of alpha,beta-unsaturated aldehydes. Journal of Applied Toxicology 28, 1027-1039.
    • Leo, A., Hansch, C., and Elkins, D. (1971). Partition coefficients and their uses.
    • Chemical Reviews 71, 525-616.
    • Cronin, M.T.D., Dearden, J.C., Duffy, J.C., Edwards, R., Manga, N., Worth, A.P., and Worgan, A.D.P. (2002). The importance of hydrophobicity and electrophilicity descriptors in mechanistically-based QSAEs for toxicological endpoints. Sar and Qsar in Environmental Research 13, 167-176.
    • Farmer, E.E., Almeras, E., and Krishnamurthy, V. (2003). Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Current Opinion in Plant Biology 6, 372-378.
    • Weber, H., Chetelat, A., Reymond, P., and Farmer, E.E. (2004). Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde.
    • Plant Journal 37, 877-888.
    • Bate, N.J., and Rothstein, S.J. (1998). C-6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant Journal 16, 561-569.
    • Vollenweider, S., Weber, H., Stolz, S., Chetelat, A., and Farmer, E.E. (2000).
    • Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant Journal 24, 467-476.
    • Eckardt, N.A. (2008). Oxylipin signaling in plant stress responses. Plant Cell 20, 495-497.
    • Montillet, J.L., Cacas, J.L., Garnier, L., Montane, M.H., Douki, T., Bessoule, J.J., Polkowska-Kowalczyk, L., Maciejewska, U., Agnel, J.P., Vial, A., et al. (2004).
    • The upstream oxylipin profile of Arabidopsis thaliana: a tool to scan for oxidative stresses. Plant Journal 40, 439-451.
    • Andersson, M.X., Hamberg, M., Kourtchenko, O., Brunnstrom, A., McPhail, K.L., Gerwick, W.H., Gobel, C., Feussner, I., and Ellerstrom, M. (2006).
    • Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana - Formation of a novel oxo-phytodienoic acid-containing galactolipid, arabidopside E. Journal of Biological Chemistry 281, 31528-31537.
    • (2001). Enzymatic and non-enzymatic lipid peroxidation in leaf development.
    • Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 1533, 266-276.
    • Michael J. Carlile, G.W.G., Sarah C. Watkinson (2001). The Fungi, 2nd Edition, (London, Oxford, Boston, New York and San Diego: Academic Press).
    • (1998). Quantitation of the octadecanoid 12-oxo-phytodienoic acid, a signalling compound in plant mechanotransduction. Phytochemistry 47, 539-546.
    • Ainai, T., Matsuumi, M., and Kobayashi, Y. (2003). Efficient total synthesis of 12-oxo-PDA and OPC-8 : 0. Journal of Organic Chemistry 68, 7825-7832.
    • Weber, H., Vick, B.A., and Farmer, E.E. (1997). Dinor-oxo-phytodienoic acid: A new hexadecanoid signal in the jasmonate family. Proceedings of the National Academy of Sciences of the United States of America 94, 10473-10478.
    • Gundlach, H., and Zenk, M.H. (1998). Biological activity and biosynthesis of pentacyclic oxylipins: The linoleic acid pathway. Phytochemistry 47, 527-537.
    • Gardner, T.M.K.a.H.W. (2002). Lipid Biotechnology, (New York: Marcel Dekker, Inc.).
    • Schaller, A., and Stintzi, A. (2009). Enzymes in jasmonate biosynthesis - Structure, function, regulation. Phytochemistry 70, 1532-1538.
    • Vladimir Pliska, B.T., Han van de Waterbeemd, Raimund Mannhold, Hugo Kubinyi, Hendrik Timmerman (1996). Lipophilicity in Drug Action and Toxicology (Oxford: Wiley-VCH ).
    • Frontier, A.J., and Collison, C. (2005). The Nazarov cyclization in organic synthesis. Recent advances. Tetrahedron 61, 7577-7606.
    • Brummond, K.M., and Kent, J.L. (2000). Recent advances in the Pauson-Khand reaction and related [2+2+1] cycloadditions. Tetrahedron 56, 3263-3283.
    • Grieco, P.A., and Abood, N. (1989). Cycloalkenone synthesis via lewis acid-catalyzed retro diels-alder reactions of norbornene derivatives synthesis of 12-oxophytodienoic acid. Journal of Organic Chemistry 54, 6008-6010.
    • Ernst, M., and Helmchen, G. (2002). A new synthesis route to enantiomerically pure jasmonoids. Angewandte Chemie-International Edition 41, 4054-4056.
    • Kobayashi, Y., and Matsuumi, M. (2002). Controlled syntheses of 12-oxo-PDA and its 13-epimer. Tetrahedron Letters 43, 4361-4364.
    • Ito, M., Matsuumi, M., Murugesh, M.G., and Kobayashi, Y. (2001). Scope and limitation of organocuprates, and copper or nickel catalyst-modified Grignard reagents for installation of an alkyl group onto cis-4-cyclopentene-1,3-diol monoacetate. Journal of Organic Chemistry 66, 5881-5889.
    • Kharasch, M.S. (1954). Grignard reactions of nonmetallic substances., (New York : Prentice-Hall ; London : Constable).
    • Homer, J., and Perry, M.C. (1994). New method for NMR signal enhancement by polarization transfer, and attached nucleus testing. Journal of the Chemical Society-Chemical Communications, 373-374.
    • Wuts, T.W.G.a.P.G.M. (1991). Protective groups in organic synthesis, 2nd Edition, (New York, Chichester, Brisbane, Toronto and Singapore: John Wiley & Sons. Inc).
    • Weaving, R., Roulland, E., Monneret, C., and Florent, J.C. (2003). A rapid access to chiral alkylidene cyclopentenone prostaglandins involving ring-closing metathesis reaction. Tetrahedron Letters 44, 2579-2581.
    • Schelwies, M., Dubon, P., and Helmchen, G. (2006). Enantioselective modular synthesis of 2,4-disubstituted cyclopentenones by iridium-catalyzed allylic alkylation. Angewandte Chemie-International Edition 45, 2466-2469.
    • Deacon, J. (2006). Fungal Biology, 4th Edition, (Oxford: Wiley, John & Sons, Incorporated).
    • Andrivon, D. (1996). The origin of Phytophthora infestans populations present in Europe in the 1840s: A critical review of historical and scientific evidence.
    • Plant Pathology 45, 1027-1035.
    • Rosslenbroich, H.J., and Stuebler, D. (2000). Botrytis cinerea - history of chemical control and novel fungicides for its management. Crop Protection 19, 557-561.
    • Horst, C.W.R.K. (2001). Westcott's plant disease handbook, 6th Edition, (New York: Springer).
    • Williamson, B., Tudzynsk, B., Tudzynski, P., and van Kan, J.A.L. (2007).
    • Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology 8, 561-580.
    • Jennings, S.I.a.D. (1995). Microbial culture, (Oxford: Bios Scientific Publishers).
    • Fujita, K., and Kubo, I. (2002). Antifungal activity of octyl gallate. International Journal of Food Microbiology 79, 193-201.
    • Kubo, I., Muroi, H., and Kubo, A. (1995). Structural functions of antimicrobial long-chain alcohols and phenols. Bioorganic & Medicinal Chemistry 3, 873-880.
    • Kubo, I., Xiao, P., Nihei, K., Fujita, K., Yamagiwa, Y., and Kamikawa, T. (2002).
    • Molecular design of antifungal agents. Journal of Agricultural and Food Chemistry 50, 3992-3998.
    • Kubo, I., Fujita, T., Kubo, A., and Fujita, K. (2003). Modes of antifungal action of alkanols against Saccharomyces cerevisiae. Bioorganic & Medicinal Chemistry 11, 1117-1122.
    • Kubo, I., Fujita, K., Nihei, K., and Nihei, A. (2004). Antibacterial activity of akyl gallates against Bacillus subtilis. Journal of Agricultural and Food Chemistry 52, 1072-1076.
    • Fujita, K.I., Fujita, T., and Kubo, I. (2007). Anethole, a potential antimicrobial synergist, converts a fungistatic dodecanol to a fungicidal agent. Phytotherapy Research 21, 47-51.
    • Fujita, K., and Kubo, I. (2005). Multifunctional action of antifungal polygodial against Saccharomyces cerevisiae: Involvement of pyrrole formation on cell surface in antifungal action. Bioorganic & Medicinal Chemistry 13, 6742-6747.
    • Carballeira, N.M., Sanabria, D., and Parang, K. (2005). Total synthesis and further scrutiny of the in vitro antifungal activity of 6-nonadecynoic acid. Archiv Der Pharmazie 338, 441-443.
    • Santino, A., Poltronieri, P., and Mita, G. (2005). Advances on plant products with potential to control toxigenic fungi: A review. Food Additives and Contaminants 22, 389-395.
    • Glazebrook, J., Rogers, E.E., and Ausubel, F.M. (1997). Use of Arabidopsis for genetic dissection of plant defense responses. Annual Review of Genetics 31, 547-569.
    • Kliebenstein, D.J., Rowe, H.C., and Denby, K.J. (2005). Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant Journal 44, 25-36.
    • Bruinsma, M., Pang, B.P., Mumm, R., van Loon, J.J.A., and Dicke, M. (2009).
    • Comparing induction at an early and late step in signal transduction mediating indirect defence in Brassica oleracea. Journal of Experimental Botany 60, 2589-2599.
    • Denby, K.J., Kumar, P., and Kliebenstein, D.J. (2004). Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant Journal 38, 473-486.
    • Montillet, J.L., Agnel, J.P., Ponchet, M., Vailleau, F., Roby, D., and Triantaphylides, C. (2002). Lipoxygenase-mediated production of fatty acid hydroperoxides is a specific signature of the hypersensitive reaction in plants.
    • Plant Physiology and Biochemistry 40, 633-639.
    • Russell, P.E. (2005). A century of fungicide evolution. Journal of Agricultural Science 143, 11-25.
    • Hewitt, H.G. (2000). New modes of action of fungicides. Pesticide Outlook, 28-32.
    • Venables, P., and Russell, A.D. (1975). Nystatin-induced changes in Saccharomyces cerevisiae. Resilient liners are frequently used to treat denture stomatitis, a condition often associated with Candida 7, 121-127.
    • Vermerie, N., Malbrunot, C., Azar, M., and Arnaud, P. (1997). Stability of nystatin in mouthrinses; effect of pH, temperature, concentration and colloidal silver addition, studied using an in vitro antifungal activity. Pharmacy World & Science 19, 197-201.
    • Bligh, E.G., and Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911-917.
    • Folch, J., Lees, M., and Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226, 497-509.
    • Li, H.Z., Pordesimo, L., and Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International 37, 731-738.
    • Young, J.C. (1995). Microwave-assisted extraction of the fungal metabolite ergosterol and total fatty acids. Journal of Agricultural and Food Chemistry 43, 2904-2910.
    • Fujita, K., and Kubo, I. (2002). Plasma membrane injury induced by nonyl gallate in Saccharomyces cerevisiae. Journal of Applied Microbiology 92, 1035-1042.
    • Thevissen, K., Ghazi, A., DeSamblanx, G.W., Brownlee, C., Osborn, R.W., and Broekaert, W.F. (1996). Fungal membrane responses induced by plant defensins and thionins. Journal of Biological Chemistry 271, 15018-15025.
    • (1998). Biosynthesis of triacylglycerol in the filamentous fungus Mucor circinelloides. Microbiology-Sgm 144, 2639-2645.
    • Kates, M. (1986). Techniques in lipidology 2nd Edition, (Amsterdam: The Netherlands: Elsevier).
    • Griffiths, R.G., Dancer, J., O'Nea, E., and Harwood, J.L. (2003). Lipid composition of Botrytis cinerea and inhibition of its radiolabelling by the fungicide iprodione. New Phytologist 160, 199-207.
    • Laurence M. Harwood, C.J.M., Jonathan M. Percy (1998). Experimental Organic Chemistry: Preparative and Microscale 2nd Edition, (Oxford, London: Wiley-Blackwell).
    • Sterinspeziale, N.B., Setton, C.P., Kahane, V.L., and Speziale, E.H. (1989).
    • Increase of phophatidylinositol arachidonic acid incorporation induced by mepacrine. Biochemical Pharmacology 38, 725-728.
    • Horn, R. (1991). Diffusion of nystatin in plasma-membrane is inhibited by a glass-membrane seal. Biophysical Journal 60, 329-333.
    • (2002). Antimicrobial activity of methyl cis-7-oxo deisopropyldehydroabietate on Botrytis cinerea and Lophodermium seditiosum: ultrastructural observations by transmission electron microscopy. Journal of Applied Microbiology 93, 765-771.
    • Schultz, T.W., Netzeva, T.I., Roberts, D.W., and Cronin, M.T.D. (2005).
    • Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals. Chemical Research in Toxicology 18, 330-341.
    • Kubo, I., Fujita, K., Nihei, K., and Kubo, A. (2004). Anti-Salmonella activity of (2E)-alkenals. Journal of Applied Microbiology 96, 693-699.
    • Richard Schwalbe, L.S.-M.a.A.C.G. (2007). Antimicrobial Susceptibilty Testing Protocols, 1st Edition, (Boca Raton: CRC Press).
    • Trombetta, D., Saija, A., Bisignano, G., Arena, S., Caruso, S., Mazzanti, G., Uccella, N., and Castelli, F. (2002). Study on the mechanisms of the antibacterial action of some plant alpha,beta-unsaturated aldehydes. Letters in Applied Microbiology 35, 285-290.
    • Nihei, K., Nihei, A., and Kubo, I. (2003). Rational design of antimicrobial agents: Antifungal activity of alk(en)yl dihydroxybenzoates and dihydroxyphenyl alkanoates. Bioorganic & Medicinal Chemistry Letters 13, 3993-3996.
    • Epand, R.F., Savage, P.B., and Epand, R.M. (2007). Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins).
    • Biochimica Et Biophysica Acta-Biomembranes 1768, 2500-2509.
    • Carballeira, N.M., O'Neill, R., and Parang, K. (2007). Synthesis and antifungal properties of at-methoxy and alpha-hydroxyl substituted 4-thiatetradecanoic acids. Chemistry and Physics of Lipids 150, 82-88.
    • Carballeira, N.M., Miranda, C., and Parang, K. (2009). The first total synthesis of (+/-)-4-methoxydecanoic acid: a novel antifungal fatty acid. Tetrahedron Letters 50, 5699-5700.
    • Schultz, T.W., Yarbrough, J.W., and Johnson, E.L. (2005). Structure-activity relationships for reactivity of carbonyl-containing compounds with glutathione.
    • Sar and Qsar in Environmental Research 16, 313-322.
    • Hamberg, M., Chechetkin, I.R., Grechkin, A.N., de Leon, I.P., Castresana, C., and Bannenberg, G. (2006). Synthesis of 3-oxalinolenic acid and beta-oxidation-resistant 3-oxa-oxylipins. Lipids 41, 499-506.
    • Benigni, R., Passerini, L., and Rodomonte, A. (2003). Structure-activity relationships for the mutagenicity and carcinogenicity of simple and alpha-beta unsaturated aldehydes. Environmental and Molecular Mutagenesis 42, 136-143.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article