LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kartopu, Giray; Taylor, A.A.; Clayton, Andrew J; Barrioz, Vincent; Lamb, D.A.; Irvine, Stuart J (2014)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects:
Utilisation of wide bandgap Cd1_xZnxS alloys as an alternative to the CdS window layer is an attractive route to enhance the performance of CdTe thin film solar cells. For successful implementation, however, it is vital to control the composition and properties of Cd1_xZnxS through device fabrication processes involving the relatively high-temperature CdTe deposition and CdCl2 activation steps. In this study, cross-sectional scanning transmission electron microscopy and depth profiling methods were employed to investigate chemical and structural changes in CdTe/Cd1_xZnxS/CdS superstrate device structures deposited on an ITO/boro-aluminosilicate substrate. Comparison of three devices in different states of completion—fully processed (CdCl2 activated), annealed only (without CdCl2 activation), and a control (without CdCl2 activation or anneal)—revealed cation diffusion phenomena within the window layer, their effects closely coupled to the CdCl2 treatment. As a result, the initial Cd1_xZnxS/CdS bilayer structure was observed to unify into a single Cd1_xZnxS layer with an increased Cd/Zn atomic ratio; these changes defining the properties and performance of the Cd1_xZnxS/CdTe device.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovoltaics: Res. Appl. 21, 1-11 (2013).
    • 2G. Kartopu, A. J. Clayton, W. S. M. Brooks, S. D. Hodgson, V. Barrioz, A. Maertens, D. A. Lamb, and S. J. C. Irvine, “Effect of window layer composition in Cd1 xZnxS/CdTe solar cells,” Prog. Photovoltaics: Res. Appl. 22, 18-23 (2014).
    • 3X. Wu, Y. Yan, R. G. Dhere, Y. Zhang, J. Zhou, C. Perkins, and B. To, “Nanostructured CdS:O film: Preparation, properties, and application,” Phys. Status Solidi C 1, 1062-1066 (2004).
    • 4U. Jahn, T. Okamoto, A. Yamada, and M. Konagai, “Doping and intermixing in CdS/CdTe solar cells fabricated under different conditions,” J. Appl. Phys. 90, 2553-2558 (2001).
    • 5K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197, 733-742 (1999), and references therein.
    • 6M. A. Islam, M. S. Hossain, M. M. Aliyu, M. R. Karim, T. Razykov, K. Sopian, and N. Amin, “Effect of CdCl2 treatment on structural and electronic property of CdTe thin films deposited by magnetron sputtering,” Thin Solid Films 546, 367-374 (2013).
    • 7Y. Yan, R. G. Dhere, K. M. Jones, and M. M. Al-Jassim, “Influence of substrate structure on the growth of CdTe thin films,” J. Appl. Phys. 89, 5944-5949 (2001).
    • 8M. H€adrich, N. Lorenz, H. Metzner, U. Reislo€hner, S. Mack, M. Gossla, and W. Witthuhn, “CdTe-CdS solar cells-Production in a new baseline and investigation of material properties,” Thin Solid Films 515(15), 5804-5807 (2007).
    • 9D. Grecu and A. D. Compaan, “Rutherford backscattering study of sputtered CdTe/CdS bilayers,” J. Appl. Phys. 87, 1722-1726 (2000), and references therein.
    • 10A. J. Clayton, S. J. C. Irvine, E. W. Jones, G. Kartopu, V. Barrioz, and W. S. M. Brooks, “MOCVD of Cd(1 x)Zn(x)S/CdTe PV cells using an ultra-thin absorber layer,” Sol. Energy Mater. Sol. Cells 101, 68-72 (2012).
    • 11J. Zhou, X. Wu, G. Teeter, B. To, Y. Yan, R. G. Dhere, and T. A. Gessert, “CBD-Cd1-xZnxS thin films and their application in CdTe solar cells,” Phys. Status Solidi B 241(3), 775-778 (2004).
    • 12S. J. C. Irvine, V. Barrioz, D. Lamb, E. W. Jones, and R. L. RowlandsJones, “MOCVD of thin film photovoltaic solar cells-Next-generation production technology?,” J. Cryst. Growth 310, 5198-5203 (2008).
    • 13A. A. Taylor, J. D. Major, G. Kartopu, D. A. Lamb, V. Barrioz, A. J. Clayton, J. Duenow, R. Dhere, H. Moutinho, S. J. C. Irvine, K. Durose, and B. G. Mendis, “A comparative STEM study of sulfur diffusion in CdS/CdTe thin film photovoltaics” (unpublished).
    • 14L. A. Giannuzzi and F. A. Stevie, “Focused ion beam milling for TEM specimen preparation,” Micron 30, 197-204 (1999).
    • 15B. E. McCandless, L. V. Moulton, and R. W. Birkmire, “Recrystallization and sulfur diffusion in CdCl2-treated CdTe/CdS thin films,” Prog. Photovoltaics: Res. Appl. 5, 249-260 (1997).
    • 16M. Terheggen, H. Heinrich, G. Kostorz, D. Baetzner, A. Romeo, and A. N. Tiwari, “Analysis of bulk and interface phenomena in CdTe/CdS thin-film solar cells,” Interface Sci. 12, 259-266 (2004).
    • 17W. K. Metzger, D. Albin, M. J. Romero, P. Dippo, and M. Young, “CdCl2 treatment, S diffusion, and recombination in polycrystalline CdTe,” J. Appl. Phys. 99, 103703-103708 (2006).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article