LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Preedy, Emily Callard; Perni, Stefano; Prokopovich, Polina (2015)
Publisher: Royal Society of Chemistry
Journal: Rsc Advances
Languages: English
Types: Article
Subjects: Chemistry, RS

Classified by OpenAIRE into

mesheuropmc: musculoskeletal diseases
Periprosthetic osteolysis and implant loosening are the outcomes of wear debris generation in total joint replacements. Wear debris formed from the implanted materials consisting of metals, polymers, ceramic and bone cement initiate the immune system response. Often osteoblasts, the principal cell type in bone tissue adjacent to the prostheses, are directly impacted. In this study, the influence of cobalt, titanium and PMMA bone cement particles of different sizes, charges and compositions on mouse osteoblast adhesion, nanomechanics (elasticity and spring constant) and metabolic activity were investigated. These studies were accompanied by osteoblast mineralisation experiments and cell uptake after exposure to particles at defined time points. Our results demonstrate that alteration of the nanomechanical properties are mainly dependent on the metal type rather than nanoparticles size and concentration. Moreover, despite uptake increasing over exposure time, the cell characteristics exhibit changes predominately after the first 24 hours, highlighting that the cell responses to nanoparticle exposure are not cumulative. Understanding these processes is critical to expanding our knowledge of implant loosening and elucidating the nature of prosthetic joint failure.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 V. Sansone, D. Pagani and M. Melato, The effects on bone cells of metal ions released from orthopaedic implants, a review, Clinical Cases in Mineral and Bone Metabolism, 2013, 10(1), 34-40.
    • 2 Y. Abu-Amer, I. Darwech and J. C. Clohisy, Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies, Arthritis Res. Ther., 2007, 9(suppl. 1), S6.
    • 3 C. Kowandy, H. Mazouz and C. Richard, Isolation and analysis of articular joints wear debris generated in vitro, Wear, 2006, 261(9), 966-970.
    • 4 P. Prokopovich, S. Perni, R. M. Hall and J. Fisher, Spatial variation of wear on Charit´e lumbar discs, Acta Biomater., 2011, 7(11), 3914-3926.
    • 5 K. Ren, A. Dusad, Y. Zhang and D. Wang, Therapeutic intervention for wear debris-induced aseptic implant loosening, Acta Pharm. Sin. B, 2013, 3(2), 76-85.
    • 6 S. B. Goodman, P. Huie, Y. Song, D. Schurman, W. Maloney, S. Woolson and R. Sibley, Cellular prole and cytokine production at prosthetic interfaces. Study of tissues retrieved from revised hip and knee replacements, J. Bone Jt. Surg., Br. Vol., 1998, 80(3), 531-539.
    • 7 H. W. Fang, C. B. Yang, C. H. Chang, C. H. Huang, H. L. Liu and S. B. Fang, The potential role of phagocytic capacity in the osteolytic process induced by polyethylene wear particles, J. Int. Med. Res., 2006, 34(6), 655-664.
    • 8 C. Vermes, T. T. Glant, N. J. Hallab, E. A. Fritz, K. A. Roebuck and J. J. Jacobs, The potential role of the osteoblast in the development of periprosthetic osteolysis: review of in vitro osteoblast responses to wear debris, corrosion products, and cytokines and growth factors, J. Arthroplasty, 2001, 16(suppl. 1 and 8), 95-100.
    • 9 C. H. Lohmann, Z. Schwartz, G. Ko¨ster, U. Jahn, G. H. Buchhorn, M. J. MacDougall, D. Casasola, Y. Liu, V. L. Sylvia, D. D. Dean and B. D. Boyan, Phagocytosis of wear debris by osteoblasts affects differentiation and local factor production in a manner dependent on particle composition, Biomaterials, 2000, 21(6), 551-561.
    • 10 M. Bahraminasab, B. B. Sahari, K. L. Edwards, F. Farahmand, M. Arumugam and T. S. Hong, Aseptic loosening of femoral components - a review of current and future trends in materials used, Mater. Des., 2012, 42(0), 459-470.
    • 11 B. Behl, I. Papageorgiou, C. Brown, R. Hall, J. L. Tipper, J. Fisher and E. Ingham, Biological effects of cobaltchromium nanoparticles and ions on dural broblasts and dural epithelial cells, Biomaterials, 2013, 34(14), 3547-3558.
    • 12 R. Chiu, T. Ma, R. L. Smith and S. B. Goodman, Ultrahigh molecular weight polyethylene wear debris inhibits osteoprogenitor proliferation and differentiation in vitro, J. Biomed. Mater. Res., Part A, 2009, 89(1), 242-247.
    • 13 R. Chiu, T. Ma, R. L. Smith and S. B. Goodman, Polymethylmethacrylate particles inhibit osteoblastic differentiation of MC3T3-E1 osteoprogenitor cells, J. Orthop. Res., 2008, 26(7), 932-936.
    • 14 S.-Y. Tee, A. R. Bausch and P. A. Janmey, The mechanical cell, Curr. Biol., 2009, 19(17), R745-R748.
    • 15 S.-Y. Tee, J. Fu, C. S. Chen and P. A. Janmey, Cell Shape and Substrate Rigidity Both Regulate Cell Stiffness, Biophys. J., 2011, 100(5), L25-L27.
    • 16 C. T. Lim, E. H. Zhou and S. T. Quek, Mechanical models for living cells-a review, J. Biomech., 2006, 39(2), 195-216.
    • 17 C. Schmidt, A. A. Ignatius and L. E. Claes, Proliferation and differentiation parameters of human osteoblasts on titanium and steel surfaces, J. Biomed. Mater. Res., 2001, 54(2), 209-215.
    • 18 J. Helenius, C. P. Heisenberg, H. E. Gaub and D. J. Muller, Single-cell force spectroscopy, J. Cell Sci., 2008, 121(11), 1785-1791.
    • 19 X. Cai, X. Xing, J. Cai, Q. Chen, S. Wu and F. Huang, Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: an AFM study, Micron, 2010, 41(3), 257-262.
    • 20 R. Dattani, Femoral osteolysis following total hip replacement, Postgrad. Med. J., 2007, 83(979), 312-316.
    • 21 K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials, 2000, 21(7), 667-681.
    • 22 K. Anselme, P. Davidson, A. M. Popa, M. Giazzon, M. Liley and L. Ploux, The interaction of cells and bacteria with surfaces structured at the nanometre scale, Acta Biomater., 2010, 6(10), 3824-3846.
    • 23 A. Hunter, C. W. Archer, P. S. Walker and G. W. Blunn, Attachment and proliferation of osteoblasts and broblasts on biomaterials for orthopaedic use, Biomaterials, 1995, 16(4), 287-295.
    • 24 K. E. Kasza, F. Nakamura, S. Hu, P. Kollmannsberger, N. Bonakdar, B. Fabry, T. P. Stossel, N. Wang and D. A. Weitz, Filamin A is essential for active cell stiffening but not passive stiffening under external force, Biophys. J., 2009, 96(10), 4326-4335.
    • 25 S. Perni, M. G. Kong and P. Prokopovich, Cold atmospheric pressure gas plasma enhances the wear performance of ultra-high molecular weight polyethylene, Acta Biomater., 2012, 8(3), 1357-1365.
    • 26 P. Prokopovich, R. Leech, C. J. Carmalt, I. P. Parkin and S. Perni, A novel bone cement impregnated with silvertiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties, Int. J. Nanomed., 2013, 8, 2227- 2237.
    • 27 P. Prokopovich, M. Ko¨brick, E. Brousseau and S. Perni, Potent antimicrobial activity of bone cement encapsulating silver nanoparticles capped with oleic acid, J. Biomed. Mater. Res., Part B, 2015, 103(2), 273-281.
    • 28 C. A. Gregory, W. G. Gunn, A. Peister and D. J. Prockop, An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction, Anal. Biochem., 2004, 329(1), 77-84.
    • 29 E. C. Preedy, E. Brousseau, S. Evans, S. Perni and P. Prokopovich, Adhesive forces and surface properties of cold gas plasma treated UHMWPE, Colloids Surf., A, 2014, 460, 83-89.
    • 30 J. E. Sader, J. A. Sanelli, B. D. Adamson, J. P. Monty, X. Wei, S. A. Crawford, J. R. Friend, I. van Marusic, P. Mulvaney and E. J. Bieske, Spring constant calibration of atomic force microscope cantilevers of arbitrary shape, Rev. Sci. Instrum., 2012, 83(10), 103705.
    • 31 J. E. Sader, I. Larson, P. Mulvaney and R. L. White, Method for the calibration of atomic force microscope cantilevers, Rev. Sci. Instrum., 1995, 66(7), 3789-3798.
    • 32 E. Ingham and J. Fisher, Biological reactions to wear debris in total joint replacement, Proc. Inst. Mech. Eng., Part H, 2000, 214(1), 21-37.
    • 33 P. Prokopovich, Interactions between mammalian cells and nano- or micro-sized wear particles: physico-chemical views against biological approaches, Adv. Colloid Interface Sci., 2014, 213, 36-47.
    • 34 J. A. Wimhurst, R. A. Brooks and N. Rushton, The effects of particulate bone cements at the bone-implant interface, J. Bone Jt. Surg., Br. Vol., 2001, 83, 588-592.
    • 35 E. L. S. da Rosa, Kinetic effects of TiO(2) ne particles and nanoparticles aggregates on the nanomechanical properties of human neutrophils assessed by force spectroscopy, BMC Biophys., 2013, 6, 11.
    • 36 V. H. Grassian, A. Adamcakova-Dodd, J. M. Pettibone, P. I. O'shaughnessy and P. S. Thorne, Inammatory response of mice to manufactured titanium dioxide nanoparticles: comparison of size effects through different exposure routes, Nanotoxicology, 2007, 1(3), 211-226.
    • 37 R. Chiu and S. B. Goodman, Biological Response of Osteoblasts and Osteoprogenitors to Orthopaedic Wear Debris, in Osteogenesis - Biochemistry, Genetics and Molecular Biology, ed. L. Yunfeng, 2012, CC BY.
    • 38 E. M. Darling, M. Topel, S. Zauscher, T. P. Vail and F. Guilak, Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes, J. Biomech., 2008, 41(2), 454-464.
    • 39 O. Thoumine, O. Cardoso and J. J. Meister, Changes in the mechanical properties of broblasts during spreading: a micromanipulation study, Eur. Biophys. J., 1999, 28(3), 222- 234.
    • 40 J. Domke, S. Danno¨hl, W. J. Parak, O. Mu¨ller, W. K. Aicher and M. Radmacher, Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy, Colloids Surf., B, 2000, 19(4), 367-379.
    • 41 D. Docheva, D. Padula, C. Popov, W. Mutschler, H. Clausen- 48 S. Y. Kwon, H. Takei, D. P. Pioletti, T. Lin, Q. J. Ma, Schaumann and M. Schieker, Researching into the cellular W. H. Akeson, D. J. Wood and K. L. Sung, Titanium shape, volume and elasticity of mesenchymal stem cells, particles inhibit osteoblast adhesion to bronectin-coated osteoblasts and osteosarcoma cells by atomic force substrates, J. Orthop. Res., 2000, 18(2), 203-211. microscopy, J. Cell. Mol. Med., 2008, 12(2), 537-552. 49 S. B. Goodman, T. Ma, R. Chiu, R. Ramachandran and
    • 42 K. Bhadriraju and L. K. Hansen, Extracellular Matrix- and R. L. Smith, Effects of orthopaedic wear particles on Cytoskeleton-Dependent Changes in Cell Shape and osteoprogenitor cells, Biomaterials, 2006, 27(36), 6096-6101. Stiffness, Exp. Cell Res., 2002, 278(1), 92-100. 50 S. B. Goodman and T. Ma, Cellular chemotaxis induced by
    • 43 A. G. Moutzouri and G. M. Athanassiou, Insights into the wear particles from joint replacements, Biomaterials, 2010, Alteration of Osteoblast Mechanical Properties upon 31(19), 5045-5050. Adhesion on Chitosan, BioMed Res. Int., 2014, 2014, 8. 51 G. M. Keegan, I. D. Learmonth and C. P. Case, Orthopaedic
    • 44 S. Y. Kwon, T. Lin, H. Takei, Q. Ma, D. J. Wood, D. O'Connor metals and their potential toxicity in the arthroplasty and K. L. Sung, Alterations in the adhesion behavior of patient: a review of current knowledge and future osteoblasts by titanium particle loading: inhibition of cell strategies, J. Bone Jt. Surg., Br. Vol., 2007, 89(5), 567-573. function and gene expression, Biorheology, 2001, 38(2-3), 52 Y. Kadoya, P. A. Revell, N. al-Saffar, A. Kobayashi, G. Scott 161-183. and M. A. Freeman, Bone formation and bone resorption
    • 45 R. D. A. M. Alves, Osteoblast Differentiation and Bone: Relevant in failed total joint arthroplasties: histomorphometric proteins, regulatory processes and the vascular connection, in analysis with histochemical and immunohistochemical Department of Internal Medicine, 2012, Erasmus University technique, J. Orthop. Res., 1996, 14(3), 473-482. Rotterdam, Ipskamp Drukkers, p. 166. 53 Anonymous, Bioactivity of Osteoblasts to Wear Debris
    • 46 R. G. Bacabac, D. Mizuno, C. F. Schmidt, F. C. MacKintosh, Generated From Orthopedic Devices, 1999, available from: J. J. van Loon, J. Klein-Nulend and T. H. Smit, Round versus http://biomed.brown.edu/Courses/BI108/ at: bone cell morphology, elasticity, and mechanosensing, BI108_1999_Groups/THRdebris_Team/gordon.html. J. Biomech., 2008, 41(7), 1590-1598. 54 C. H. Lohmann, D. D. Dean, G. Ko¨ster, D. Casasola,
    • 47 R. K. Assoian and E. A. Klein, Growth control by intracellular G. H. Buchhorn, U. Fink, Z. Schwartz and B. D. Boyan, tension and extracellular stiffness, Trends Cell Biol., 2008, Ceramic and PMMA particles differentially affect 18(7), 347-352. osteoblast phenotype, Biomaterials, 2002, 23(8), 1855-1863.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article