LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Watling, J.R.; Asenov, A.; Barker, J.R. (1998)
Publisher: Institute of Electrical and Electronics Engineers
Languages: English
Types: Other
Subjects: TK
An analytical geometric model for the valence band in strained and relaxed Si1-xGex is presented, which shows good agreement with a 6-band k·p analysis of the valence band. The geometric model allows us to define an effective mass tensor for the warped valence band structure. The model also has applications in the study of III-V semiconductors, and could aid in the interpretation of cyclotron resonance experiments in these bands. A warped three-band Monte Carlo simulation has been developed based on this model making use of the efficient calculation of trajectory dynamics that is made possible through the use of such a model. The calculated transport characteristics show good agreement with the available experimental data.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. T. Yamada and D.K.Ferry: Solid State Electron. 38 (1995) 885
    • 2. M. V. Fischetti and S . E. Laux: Journal of Applied Physics 80 (1996) 2234
    • 3. 4. J. M. Hinckley and J. Singh: Physical Review B 41 (1990) 2912.
    • G. Dresselhaus, A. F. Kip and C. Kittel: Physical Review 98 (1955) 368
    • 6. J. E. Dijstra, and W. Th. Wenckebach: Journal of Applied Physics 81 (1997) 1259
    • 7. T. Manku and A. Nathan: Journal of Applied Physics 73 (1993) 1205
    • 8. 9. G. Bir and G. Pikus, Symmetry and strain-induced effects in semiconductors (Wiley New York 1974) M. M. Reiger and P. Vogl: Physical Review B 48 (1993) 14276
    • 10. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, Inc., New York 1972)
    • 11. J. D. Wiley: Physical Review B 4 (1971) 2485
    • 12. E. J. Ryder: Physical Review 90 (1953) 766
    • 13. A. Alberigi Quaranta et al: Solid State Electronics 11 (1968) 685
    • 14. G. Busch and 0.Vogt: Physical Acta 33 (1960) 437
    • 15. A. Levitas: Physical Review 90 (1955) 1810
    • 16. J. M. Hinckley and J. Singh: J Applied Physics Letter 53 (1988) 785
    • 17. T. Yamada, J. R. Zhou, H. Miyata and D.K. Ferry: IEEE Trans. Elec. Devices 41(9) (1994) 1513
    • 18. Z. Matutinovic-Krstelj, V. Venkatraman, E.J. Prinz, J.C. Sturm and C.W. Magee: IEEE Trans El Dev 43 (1996) 457
    • 19. T.K. Carns, S . K. Chun, M. 0. Tanner, K. L. Wang, T. I. Kamins, J. E. Turner, D. Y. C. Lie, M.A. Nicolet and R. G. Wilson: IEEE Trans El Dev 4 1 (1994) 1273
    • 20. J. M. McGregor, T. Manku , J. P. Noel, D. J. Roulston, A. Nathan and D. C. J. Houghton: Electronic Materials 22 (1993) 319
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article