Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lehnert, Michal; De Ste Croix, Mark B; Zaatar, A; Hughes, Jonathan; Varekova, R; Lastovicka, O (2017)
Publisher: Wiley
Languages: English
Types: Article
Subjects: RC1200
Poor neuromuscular control has been proposed as a risk factor for non-contact injuries, thus this study aimed to explore the effects of soccer-specific fatigue on leg muscle activation, reactive strength, leg stiffness, and functional hamstring/quadriceps ratio (H/QFUNC) in elite male youth soccer players. Outcome measures were determined in 18 youth players (age 14.4 ± 0.5 years; stature 169.4 ± 9.9 cm; mass 59.3 ± 8.9 kg; maturity offset 0.86 ± 0.88 years) pre and post simulated soccer match play (SAFT90). There was no fatigue-related change in the H/QFUNC; however, reactive strength and leg stiffness were both compromised (P < 0.001) after soccer-specific fatigue. Muscle activation was also locally compromised (P < 0.001) in the medial hamstring and quadriceps but not in the lateral muscles. Where statistically significant changes were observed, the effect sizes ranged from small to large (0.33–0.97). Compromised stiffness when fatigue is present suggests an increased yielding action, greater ground contact times, greater center of mass displacement, and less efficient movement when the limb comes into contact with the ground. This combined with a reduction in medial quadriceps muscle activation may reflect poor kinetic chain control at the hip and an increase in knee injury risk.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok