LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jenkins, SB
Languages: English
Types: Doctoral thesis
Subjects: Q1, R1
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Chari, D. M. Remyelination in Multiple Sclerosis. Int. Rev. Neurobiol. 79, 589-620 (2007).
    • Keegan, B. M. & Noseworthy, J. H. Multiple Sclerosis. Annu. Rev. Med. 53, 285-302 (2002).
    • Waxman, S. G. Demyelination in spinal cord injury and multiple sclerosis: what can we do to enhance functional recovery? J. Neurotrauma 9 Suppl 1, S105-S117 (1992).
    • Zhang, H., Jarjour, A. A., Boyd, A. & Williams, A. Central nervous system remyelination in culture - A tool for multiple sclerosis research. Exp. Neurol. 230, 138-148 (2011).
    • Kim, B. G., Hwang, D. H., Lee, S. I., Kim, E. J. & Kim, S. U. Stem cell-based cell therapy for spinal cord injury. Cell Transplant. 16, 355-364 (2007).
    • Rev. Neurosci. 9, 839-855 (2008).
    • Bradl, M. & Lassmann, H. Oligodendrocytes: biology and pathology. Acta Neuropath. 119, 37-53 (2010).
    • Hartline, D. K. What is myelin? Neuron Glia Biol. 4, 153-163 (2008).
    • Baumann, N. & Pham-Dinh, D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev. 81, 871-927 (2001).
    • Potter, G. B., Rowitch, D. H. & Petryniak, M. A. Myelin restoration: progress and prospects for human cell replacement therapies. Arch. Immunol. Ther. Exp. (Warsz) 59, 179-193 (2011).
    • Chandran, S. & Compston, A. Neural stem cells as a potential source of oligodendrocytes for myelin repair. J. Neurol. Sci. 233, 179 - 181 (2005).
    • Felts, P. A., Baker, T. A. & Smith, K. J. Conduction in segmentally demyelinated mammalian central axons. J. Neurosci. 17, 7267-77 (1997).
    • Constantinou, S. & Fern, R. Conduction block and glial injury induced in developing central white matter by glycine, GABA, noradrenalin, or nicotine, studied in isolated neonatal rat optic nerve. Glia 57, 1168-1177 (2009).
    • Rodriguez, M. A function of myelin is to protect axons from subsequent injury: implications for deficits in multiple sclerosis. Brain 126, 751-752 (2003).
    • Nave, K.-A. Myelination and the trophic support of long axons. Nat. Rev. Neurosci. 11, 275-283 (2010).
    • Science 280, 1610-1613 (1998).
    • Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 33, 366-374 (2003).
    • Nature 487, 443-448 (2012).
    • Bunge, M. B., Bunge, R. P. & Ris, H. Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J. Biophys. Biochem. Cytol. 10, 67-94 (1961).
    • Nature 280, 395-396 (1979).
    • Smith, K. J., Blakemore, W. F. & McDonald, W. I. The restoration of conduction by central remyelination. Brain 104, 383-404 (1981).
    • Mekhail, M., Almazan, G. & Tabrizian, M. Oligodendrocyte-protection and remyelination postspinal cord injuries: a review. Prog. Neurobiol. 96, 322-339 (2012).
    • Richardson, W. D., Kessaris, N. & Pringle, N. Oligodendrocyte wars. Nat. Rev. Neurosci. 7, 11-18 (2006).
    • Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9, 173-179 (2006).
    • Chari, D. M. & Blakemore, W. New insights into remyelination failure in multiple sclerosis: implications for glial cell transplantation. Mult. Scler. 8, 271-277 (2002).
    • De Castro, F. & Bribián, A. The molecular orchestra of the migration of oligodendrocyte precursors during development. Brain Res. Brain Res. Rev. 49, 227-241 (2005).
    • Watkins, T. A., Emery, B., Mulinyawe, S. & Barres, B. A. Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60, 555- 569 (2008).
    • Huang, J. K. et al. Glial membranes at the node of Ranvier prevent neurite outgrowth. Science 310, 1813-1817 (2005).
    • LeBaron, F. N., Sanyal, S. & Jungalwala, F. B. Turnover rate of molecular species of sphingomyelin in rat brain. Neurochem. Res. 6, 1081-1089 (1981).
    • Lajtha, A., Toth, J., Fujimoto, K. & Agrawal, H. C. Turnover of myelin proteins in mouse brain in vivo. Biochem. J. 164, 323-329 (1977).
    • Neurosci. Lett. 456, 112-119 (2009).
    • Butts, B. D., Houde, C. & Mehmet, H. Maturation-dependent sensitivity of oligodendrocyte lineage cells to apoptosis: implications for normal development and disease. Cell Death Differ. 15, 1178- 1186 (2008).
    • Yakovlev, A. Y., Boucher, K., Mayer-Pröschel, M. & Noble, M. Quantitative insight into proliferation and differentiation of oligodendrocyte type 2 astrocyte progenitor cells in vitro. Proc.
    • Natl. Acad. Sci. USA 95, 14164-14167 (1998).
    • Jakovcevski, I., Filipovic, R., Mo, Z., Rakic, S. & Zecevic, N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front. Neuroanat. 3, 1-15 (2009).
    • Franklin, R. J. M. & Hinks, G. L. Understanding CNS remyelination : clues from developmental and regeneration biology. J. Neurosci. Res. 58, 207-213 (1999).
    • Hinks, G. L. & Franklin, R. J. Distinctive patterns of PDGF-A, FGF-2, IGF-I, and TGF-beta1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Mol. Cell Neurosci. 14, 153-168 (1999).
    • Miron, V., Cuo, Q., Wegner, C., Antel, J. & Brück, W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131, 1749- 1758 (2008).
    • Stangel, M. & Trebst, C. Remyelination strategies: new advancements toward a regenerative treatment in multiple sclerosis. Curr. Neurol. Neurosci. Rep. 6, 229-235 (2006).
    • Webber, D. J., Compston, A. & Chandran, S. Minimally manipulated oligodendrocyte precursor cells retain exclusive commitment to the oligodendrocyte lineage following transplantation into intact and injured hippocampus. Eur. J. Neurosci. 26, 1791-1800 (2007).
    • Franklin, R. J. M. Remyelination of the demyelinated CNS: the case for and against transplantation of central, peripheral and olfactory glia. Brain Res. Bull. 57, 827-832 (2002).
    • Groves, A. K. et al. Repair of demyelinated lesions by transplantation of purified 0-2A progenitor cells. Nature 362, 453-455 (1993).
    • Y. Acad. Sci. 495, 71-85 (1987).
    • Morrison, B. 3rd, Saatman, K. E., Meaney, D. F. & McIntosh, T. K. In vitro central nervous system models of mechanically induced trauma: a review. J Neurotrauma 15, 911-928 (1998).
    • Gähwiler, B. H. Organotypic monolayer cultures of nervous tissue. J. Neurosci. Methods 4, 329-342 (1981).
    • Xiang, Z. et al. Long-term maintenance of mature hippocampal slices in vitro. J. Neurosci. Methods 98, 145-154 (2000).
    • Adamchik, Y. & Frantseva, M. Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures. Brain Res. Brain Res. Protoc. 5, 153-158 (2000).
    • Dean, J. M. et al. An organotypic slice culture model of chronic white matter injury with maturation arrest of oligodendrocyte progenitors. Mol. Neurodegener. 5, 46 (2011).
    • Cho, S., Wood, A. & Bowlby, M. R. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr. Neuropharmacol. 5, 19-33 (2007).
    • Lu, H.-X., Levis, H., Liu, Y. & Parker, T. Organotypic slices culture model for cerebellar ataxia: potential use to study Purkinje cell induction from neural stem cells. Brain Res. Bull. 84, 169-173 (2011).
    • Berger, T. & Frotscher, M. Distribution and morphological characteristics of oligodendrocytes in the rat hippocampus in situ and in vitro: an immunocytochemical study with the monoclonal Rip antibody. J. Neurocytol. 23, 61-74 (1994).
    • Bahr, B. A. Long-term hippocampal slices: a model system for investigating synaptic mechanisms and pathologic processes. J. Neurosci. Res. 42, 294-305 (1995).
    • Neuroscience 26, 509-538 (1988).
    • Reeves, S. A. & Xiang, Z. Simvastatin induces cell death in a mouse cerebellar slice culture (CSC) model of developmental myelination. Exp. Neurol. 215, 41-47 (2009).
    • Kapfhammer, J. P. Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog. Histochem. Cytochem. 39, 131-182 (2004).
    • Davids, E. et al. Organotypic rat cerebellar slice culture as a model to analyze the molecular pharmacology of GABAA receptors. Eur. Neuropsychopharmacol. 12, 201-208 (2002).
    • Ohnishi, T., Matsumura, H., Izumoto, S., Hiraga, S. & Hayakawa, T. A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Res. 58, 2935-2940 (1998).
    • Harrer, M. D. et al. Live imaging of remyelination after antibody-mediated demyelination in an exvivo model for immune mediated CNS damage. Exp. Neurol. 216, 431-438 (2009).
    • Seil, F. J. & Blank, N. K. Myelination of central nervous system axons in tissue culture by transplanted oligodendrocytes. Science 212, 1407-1408 (1981).
    • Nishimura, R. N., Blank, N. K., Tiekotter, K. L., Cole, R. & De Vellis, J. Myelination of mouse cerebellar explants by rat cultured oligodendrocytes. Brain Res. 337, 159-162 (1985).
    • Prog. Nucl. Magn. Reson. Spectrosc. 55, 61-77 (2009).
    • Bulte, J. W. M. et al. Magnetic labeling and tracking of cells using magnetodendrimers as MR contrast agent. Eur. Cells Mater. 3, 7-8 (2002).
    • Franklin, R. J. M. et al. Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. Neuroreport 10, 3961-3965 (1999).
    • Lepore, A. C., Walczak, P., Rao, M. S., Fischer, I. & Bulte, J. W. M. MR imaging of lineagerestricted neural precursors following transplantation into the adult spinal cord. Exp. Neurol. 201, 49-59 (2006).
    • Bulte, J. W. et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141-1147 (2001).
    • Bulte, J. W. M., Duncan, I. D. & Frank, J. A. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J. Cereb. Blood Flow Metab. 22, 899-907 (2002).
    • Krueger, W. H. H., Madison, D. L. & Pfeiffer, S. E. Transient transfection of oligodendrocyte progenitors by electroporation. Neurochem. Res. 23, 421-426 (1998).
    • Guo, Z. et al. Efficient and sustained transgene expression in mature rat oligodendrocytes in primary culture. J. Neurosci. Res. 43, 32-41 (1996).
    • Blits, B. & Bunge, M. B. Direct gene therapy for repair of the spinal cord. J. Neurotraum. 23, 508- 520 (2006).
    • Jiang, S., Seng, S., Avraham, H. K., Fu, Y. & Avraham, S. Process elongation of oligodendrocytes is promoted by the Kelch-related protein MRP2/KLHL1. J. Biol. Chem. 282, 12319-12329 (2007).
    • Franklin, R. J. M., Quick, M. M. & Haase, G. Adenoviral vectors for in vivo gene delivery to oligodendrocytes: transgene expression and cytopathic consequences. Gene Ther. 6, 1360-1367 (1999).
    • Prog. Neurobiol. 55, 399-432 (1998).
    • Pichon, C., Billiet, L. & Midoux, P. Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr. Opin. Biotech. 21, 640-645 (2010).
    • Ther. 7, 305-318 (2007).
    • Chen, D., Sung, R. & Bromberg, J. S. Gene therapy in transplantation. Transpl. Immunol. 9, 301-314 (2002).
    • O'Leary, M. T. & Charlton, H. M. A model for long-term transgene expression in spinal cord regeneration studies. Gene Ther. 6, 1351-9 (1999).
    • Lentz, T. B., Gray, S. J. & Samulski, R. J. Viral vectors for gene delivery to the central nervous system. Neurobiol. Dis. 48, 179-188 (2011).
    • Maxwell, D. J. et al. Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells. Stem Cells 26, 517-524 (2008).
    • Neuropsychopharmacology: The fifth generation of progress pp253-262 (2002).
    • Wang, M. et al. Bioengineered scaffolds for spinal cord repair. Tissue Eng. Part B Rev. 17, 177-194 (2011).
    • Bliss, T. M., Andres, R. H. & Steinberg, G. K. Optimizing the success of cell transplantation therapy for stroke. Stroke 37, 275-294 (2011).
    • Bergen, J. M., Park, I.-K., Horner, P. J. & Pun, S. H. Nonviral approaches for neuronal delivery of nucleic acids. Pharm. Res. 25, 983-998 (2008).
    • Luo, D. & Saltzman, W. M. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat. Biotechnol. 18, 893-895 (2000).
    • Proc. Natl. Acad. Sci. USA 92, 7739-7743 (1995).
    • Chem. 384, 737-747 (2003).
    • Ther. 1, S239 (2000).
    • Plank, C., Scherer, F., Schillinger, U. & Anton, M. Magnetofection: enhancement and localization of gene delivery with magnetic particles under the influence of a magnetic field. J. Gene. Med. 2, 24 (2000).
    • McBain, S. C. et al. Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 19, 405102 (2008).
    • Fouriki, A., Farrow, N., Clements, M. A. & Dobson, J. Evaluation of the magnetic field requirements for nanomagnetic gene transfection. Nano Rev. 1, 1-5 (2010).
    • Creusat, G. et al. Proton sponge trick for pH-sensitive disassembly of polyethylenimine-based siRNA delivery systems. Bioconjug. Chem. 21, 994-1002 (2010).
    • Natl. Acad. Sci. USA 100, 3878-3882 (2003).
    • Van der Aa, M. A. E. M. et al. The nuclear pore complex: the gateway to successful nonviral gene delivery. Pharm. Res. 23, 447-459 (2006).
    • Brunner, S. et al. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther. 7, 401-407 (2000).
    • Kim, J.-B. et al. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J. Control. Release 114, 110-117 (2006).
    • Canton, I. & Battaglia, G. Endocytosis at the nanoscale. Chem. Soc. Rev. 41, 2718-2739 (2012).
    • Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37-44 (2003).
    • Swanson, J. A. & Watts, C. Macropinocytosis. Trends Cell Biol. 5, 424-428 (1995).
    • Curr. Opin. Microbiol. 15, 490-499 (2012).
    • Kumari, S., Mg, S. & Mayor, S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 20, 256-275 (2010).
    • Chithrani, B. D. & Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542-1550 (2007).
    • Thorek, D. L. J. & Tsourkas, A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29, 3583-3590 (2008).
    • Hutter, E. et al. Microglial response to gold nanoparticles. ACS Nano 4, 2595-2606 (2010).
    • Biomaterials 31, 7606-19 (2010).
    • Weill, C. O., Biri, S. & Erbacher, P. Cationic lipid-mediated intracellular delivery of antibodies into live cells. Biotechniques 44, Pvii-Pxi (2008).
    • Xia, T., Kovochich, M., Liong, M., Zink, J. I. & Nel, A. E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2, 85-96 (2008).
    • Xu, M., Zhao, Y. & Feng, M. Polyaspartamide derivative nanoparticles with tunable surface charge achieve highly efficient cellular uptake and low cytotoxicity. Langmuir 28, 11310-11318 (2012).
    • Lin, J., Zhang, H., Chen, Z. & Zheng, Y. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4, 5421-5429 (2010).
    • Wilhelm, C. et al. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24, 1001-11 (2003).
    • Verma, A. & Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 6, 12- 21 (2010).
    • Safi, M., Courtois, J., Seigneuret, M., Conjeaud, H. & Berret, J.-F. The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32, 9353-63 (2011).
    • Monopoli, M. P. et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525-2534 (2011).
    • Walczyk, D., Bombelli, F. B., Monopoli, M. P., Lynch, I. & Dawson, K. A. What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 132, 5761-5768 (2010).
    • Jing, Y. et al. Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis. FASEB J. 22, 4239-4247 (2008).
    • Bouzier-Sore, A.-K. et al. Nanoparticle phagocytosis and cellular stress: involvement in cellular imaging and in gene therapy against glioma. NMR Biomed. 23, 88-96 (2010).
    • Life Sci. 66, 2873-2896 (2009).
  • No similar publications.

Share - Bookmark

Cite this article