LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Butler, Richard J.; Benson, Roger B. J.; Carrano, Matthew T.; Mannion, Philip D.; Upchurch, Paul (2010)
Publisher: The Royal Society
Languages: English
Types: Article
Subjects: sub-01, sub-04, Research Articles

Classified by OpenAIRE into

mesheuropmc: human activities, respiratory system, parasitic diseases
The fossil record is our primary window onto the diversification of ancient life, but there are widespread\ud concerns that sampling biases may distort observed palaeodiversity counts. Such concerns have been reinforced by numerous studies that found correlations between measures of sampling intensity and observed diversity. However, correlation does not necessarily mean that sampling controls observed diversity: an alternative view is that both sampling and diversity may be driven by some common factor (e.g. variation in continental flooding driven by sea level). The latter is known as the ‘common cause’ hypothesis. Here, we present quantitative analyses of the relationships between dinosaur diversity, sampling of the dinosaur fossil record, and changes in continental flooding and sea level, providing new insights into terrestrial common cause. Although raw data show significant correlations between continental flooding/sea level and both observed diversity and sampling, these correlations do not survive detrending or removal of short-term autocorrelation. By contrast, the strong correlation between diversity and sampling is robust to various data transformations. Correlations between continental flooding/sea level and taxic diversity/sampling result from a shared upward trend in all data series, and short-term changes in continental flooding/sea level and diversity/sampling do not correlate. The hypothesis that global dinosaur diversity is tied to sea-level fluctuations is poorly supported, and terrestrial common cause is unsubstantiated as currently conceived. Instead, we consider variation in sampling to be the preferred null hypothesis for short-term diversity variation in the Mesozoic terrestrial realm.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Raup, D. M. 1972 Taxonomic diversity during the Phanerozoic. Science 177, 1065 - 1071. (doi:10.1126/ science.177.4054.1065)
    • 2 Raup, D. M. 1976 Species diversity in the Phanerozoic: an interpretation. Paleobiology 2, 289 - 297.
    • 3 Peters, S. E. & Foote, M. 2001 Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27, 583 - 601. (doi:10.1666/0094-8373(2001)027,0583:BITPAR.2.0. CO;2)
    • 4 Smith, A. B. 2001 Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Phil. Trans. R. Soc. Lond. B 356, 351 - 367. (doi:10.1098/ rstb.2000.0768)
    • 5 Smith, A. B., Gale, A. S. & Monks, N. E. A. 2001 Sealevel change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27, 241 - 253. (doi:10.1666/0094-8373 (2001)027,0241:SLCARR.2.0.CO;2)
    • 6 Peters, S. E. 2005 Geologic constraints on the macroevolutionary history of marine animals. Proc. Natl Acad. Sci. USA 102, 12 326 - 12 331. (doi:10.1073/pnas. 0502616102)
    • 7 Smith, A. B. & McGowan, A. J. 2007 The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of western Europe? Palaeontology 50, 765 - 774. (doi:10. 1111/j.1475-4983.2007.00693.x)
    • 8 Alroy, J. 2000 Successive approximations of diversity curves: ten more years in the library. Geology 28, 1023 - 1026. (doi:10.1130/0091-7613(2000)28,1023: SAODCT.2.0.CO;2)
    • 9 Alroy, J. et al. 2008 Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97 - 100. (doi:10.1126/science.1156963)
    • 10 Barrett, P. M., McGowan, A. J. & Page, V. 2009 Dinosaur diversity and the rock record. Proc. R. Soc. B 276, 2667 - 2674. (doi:10.1098/rspb.2009.0352)
    • 11 Butler, R. J., Barrett, P. M., Nowbath, S. & Upchurch, P. 2009 Estimating the effects of sampling biases on pterosaur diversity patterns: implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology 35, 432 - 446. (doi:10.1666/0094-8373-35.3.432)
    • 12 Wall, P. D., Ivany, L. C. & Wilkinson, B. H. 2009 Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardisation techniques. Paleobiology 35, 146 - 167. (doi:10.1666/07069.1)
    • 13 Benson, R. B. J., Butler, R. J., Lindgren, J. & Smith, A. S. 2010 Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proc. R. Soc. B 277, 829 - 834. (doi:10.1098/rspb.2009.1845)
    • 14 Mannion, P. D., Upchurch, P., Carrano, M. T. & Barrett, P. M. In press. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biol. Rev. (doi:10.1111/j.1469-185X.2010.00139.x)
    • 15 Sepkoski, J. J. 1976 Species diversity in the Phanerozoic: species-area effects. Paleobiology 2, 298 - 303.
    • 16 Peters, S. E. 2006 Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32, 387 - 407. (doi:10.1666/05081.1)
    • 17 Benton, M. J. & Emerson, B. J. 2007 How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50, 23 - 40. (doi:10.1111/j. 1475-4983.2006.00612.x)
    • 18 Weishampel, D. B. & Horner, J. R. 1987 Dinosaurs, habitat bottlenecks, and the St. Mary River Formation. In Fourth Int. Symp. on Mesozoic Terrestrial Ecosystems and Biota: Short Papers (eds P. J. Currie & E. H. Koster), pp. 224 - 229. Drumheller, Canada: Royal Tyrell Museum.
    • 19 Dodson, P. 1990 Counting dinosaurs: how many kinds were there? Proc. Natl Acad. Sci. USA 87, 7608 - 7612. (doi:10.1073/pnas.87.19.7608)
    • 20 Bakker, R. T. 1977 Tetrapod mass extinctions-a model of the regulation of speciation rates and immigration by cycles of topographic diversity. In Patterns of evolution (ed. A. Hallam), pp. 439 - 468. Amsterdam, The Netherlands: Elsevier.
    • 21 Upchurch, P. & Barrett, P. M. 2005 Sauropodomorph diversity through time. In The sauropods: evolution and paleobiology (eds K. Curry Rogers & J. Wilson), pp. 104 - 124. Berkeley, CA: University of California Press.
    • 22 Benton, M. J. 2009 The fossil record: biological or geological signal? In The paleobiological revolution (eds D. Sepkoski & M. Ruse), pp. 43- 59. Chicago, IL: University of Chicago Press.
    • 23 Haubold, H. 1990 Dinosaurs and fluctuating sea levels during the Mesozoic. Hist. Biol. 4, 75 - 106. (doi:10. 1080/08912969009386535)
    • 24 Finarelli, J. A. & Badgley, C. 2010 Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate. Proc. R. Soc. B 277, 2721 - 2726. (doi:10. 1098/rspb.2010.0348)
    • 25 Weishampel, D. B., Dodson, P. & Osm o´lska, H. 2004 The Dinosauria, 2nd edn. Berkeley, CA: University of California Press.
    • 26 Wang, S. C. & Dodson, P. 2006 Estimating the diversity of dinosaurs. Proc. Natl Acad. Sci. USA 103, 13 601 - 13 605. (doi:10.1073/pnas.0606028103)
    • 27 Lloyd, G. T., Davis, K. E., Pisani, D., Tarver, J. E., Ruta, M., Sakamoto, M., Hone, D. W. E., Jennings, R. & Benton, M. J. 2008 Dinosaurs and the Cretaceous terrestrial revolution. Proc. R. Soc. B 275, 2483 - 2490. (doi:10.1098/rspb.2008.0715)
    • 28 Mannion, P. D. & Upchurch, P. 2010 Completeness metrics and the quality of the sauropodomorph fossil record through geological and historical time. Paleobiology 36, 283 - 302. (doi:10.1666/09008.1)
    • 29 Hunt, A. P., Lockley, M. G., Lucas, S. G. & Meyer, C. A. 1994 The global sauropod fossil record. Gaia 10, 261 - 279.
    • 30 Sereno, P. C. 1997 The origin and evolution of dinosaurs. Annu. Rev. Earth Planet. Sci. 25, 435 - 489. (doi:10.1146/annurev.earth.25.1.435)
    • 31 Gradstein, F. M., Ogg, J. G. & Smith, A. G. 2005 A geologic time scale 2004. Cambridge, UK: Cambridge University Press.
    • 32 Smith, A. G., Smith, D. G. & Funnell, B. M. 1994 Atlas of Mesozoic and Cenozoic coastlines. Cambridge, UK: Cambridge University Press.
    • 33 Peters, S. E. & Heim, N. A. 2010 The geological completeness of paleontological sampling in North America. Paleobiology 36, 61 - 79. (doi:10.1666/0094-8373-36.1. 61)
    • 34 Miller, K. G. et al. 2005 The Phanerozoic record of global sea-level change. Science 310, 1293 - 1298. (doi:10.1126/science.1116412)
    • 35 Haq, B. U., Hardenbol, J. & Vail, P. R. 1987 Chronology of fluctuating sea levels since the Triassic. Science 235, 1156 - 1167. (doi:10.1126/science.235. 4793.1156)
    • 36 Hammer, Ø., Harper, D. A. T. & Ryan, P. D. 2001 PAST: palaeontological statistics software package for education and data analysis. Palaeontol. Electronica 4, 9.
    • 37 McKinney, M. L. 1990 Classifying and analysing evolutionary trends. In Evolutionary trends (ed. K. J. McNamara), pp. 28 - 58. Tucson, AZ: University of Arizona Press.
    • 38 Moucha, R., Forte, A. M., Mitovica, J. X., Rowley, D. B., Que´re, S., Simmons, N. A. & Grand, S. P. 2008 Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth Planet. Sci. Lett. 271, 101 - 108. (doi:10.1016/j.epsl. 2008.03.056)
    • 39 Benton, M. J. 1985 Mass extinction among nonmarine tetrapods. Nature 316, 811 - 814. (doi:10.1038/ 316811a0)
    • 40 Fara, E. 2004 Estimating minimum global species diversity for groups with a poor fossil record: a case study of Late Jurassic - Eocene lissamphibians. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 59 - 82. (doi:10. 1016/j.palaeo.2004.02.001)
    • 41 Burgess, P. M. & Hovius, N. 1998 Rates of delta progradation during highstands: consequences for timing of deposition in deep-marine systems. J. Geol. Soc. 155, 217 - 222. (doi:10.1144/gsjgs.155.2.0217)
    • 42 Blum, M. D. & To¨ rnqvist, T. E. 2000 Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology 47(Suppl. 1), 2 - 48.
    • 43 Sahney, S., Benton, M. J. & Ferry, P. A. 2010 Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biol. Lett. 6, 544 - 547. (doi:10.1098/rsbl.2009.1024) 44 Fr o¨bisch, J. 2008 Global taxonomic diversity of anomodonts (Tetrapoda, Therapsida) and the terrestrial rock record across the Permian - Triassic boundary. PLoS ONE 3, 1 - 14. (doi:10.1371/journal.pone. 0003733)
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article