Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rajan, Ashwin T.; McGordon, Andrew; Jennings, P. A. (Paul A.) (2017)
Publisher: Elsevier S.A.
Journal: Journal of Power Sources
Languages: English
Types: Article
Subjects: Physical and Theoretical Chemistry, Energy Engineering and Power Technology, Renewable Energy, Sustainability and the Environment, TK, Electrical and Electronic Engineering
In a battery pack, cell-to-cell chemical variation, or the variation in operating conditions, can possibly lead to current imbalance which can accelerate pack ageing. In this paper, the Pseudo-TwoDimensional(P2D) porous electrode model is extended to a battery pack layout, to predict the overall behaviour and the cell-to-cell variation under constant voltage charging and discharging. The algorithm used in this model offers the flexibility in extending the layout to any number of cells in a pack, which can be of different capacities, chemical characteristics and physical dimensions. The coupled electrothermal effects such as differential cell ageing, temperature variation, porosity change and their effects on the performance of the pack, can be predicted using this modelling algorithm. The pack charging voltage is found to have an impact on the performance as well as the SEI layer growth. Numerical studies are conducted by keeping the cells at different thermal conditions and the results show the necessity to increase the heat transfer coefficient to cool the pack, compared to single cell. The results show that the thermal imbalance has more impact than the change in inter-connecting resistance on the split current distribution, which accelerates the irreversible porous filling and ageing.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. Doyle, T.F. Fuller, J. Newman, J. Electrochem. Soc. 140 (1993) 1526e1533.
    • [2] K. Smith, C.-Y. Wang, J. Power Sources 160 (2006) 662e673.
    • [3] P. Ramadass, B. Haran, P.M. Gomadam, R. White, B.N. Popov, J. Electrochem. Soc. 151 (2004) A196eA203.
    • [4] Y. Xie, J. Li, C. Yuan, J. Power Sources 248 (2014) 172e179.
    • [5] L. Cai, R.E. White, J. Power Sources 196 (2011) 5985e5989.
    • [6] Y. Ye, Y. Shi, N. Cai, J. Lee, X. He, J. Power Sources 199 (2012) 227e238.
    • [7] M. Dubarry, N. Vuillaume, B.Y. Liaw, J. Power Sources 186 (2009) 500e507.
    • [8] J. Kim, J. Shin, C. Chun, B. Cho, Power Electron. IEEE Trans. 27 (2012) 411e424.
    • [9] C. Sen, N.C. Kar, in: Vehicle Power and Propulsion Conference, IEEE, 2009, pp. 207e212. VPPC'09. IEEE.
    • [10] R.C. Kroeze, P.T. Krein, in: Power Electronics Specialists Conference, IEEE, 2008, pp. 1336e1342. PESC 2008. IEEE.
    • [11] K.A. Smith, C.D. Rahn, C.-Y. Wang, J. Dyn. Syst. Meas. Control 130 (2008) 011012.
    • [12] J.L. Lee, A. Chemistruck, G.L. Plett, J. Power Sources 220 (2012) 430e448.
    • [13] B. Kenney, K. Darcovich, D.D. MacNeil, I.J. Davidson, J. Power Sources 213 (2012) 391e401.
    • [14] S. Santhanagopalan, Q. Guo, R.E. White, J. Electrochem. Soc. 154 (2007) A198eA206.
    • [15] H. Sun, X. Wang, B. Tossan, R. Dixon, J. Power Sources 206 (2012) 349e356.
    • [16] B. Severino, F. Gana, R. Palma-Behnke, P.A. Estevez, W.R. Calderon-Mun~oz, M.E. Orchard, J. Reyes, M. Cortes, J. Power Sources 267 (2014) 288e299.
    • [17] A. Mills, S. Al-Hallaj, J. Power Sources 141 (2005) 307e315.
    • [18] B. Wu, V. Yufit, M. Marinescu, G.J. Offer, R.F. Martinez-Botas, N.P. Brandon, J. Power Sources 243 (2013) 544e554.
    • [19] G. Sikha, P. Ramadass, B. Haran, R.E. White, B.N. Popov, J. power sources 122 (2003) 67e76.
    • [20] L.H. Saw, Y. Ye, A.A. Tay, W.T. Chong, S.H. Kuan, M.C. Yew, Appl. Energy 177 (2016) 783e792.
    • [21] T.R. Ashwin, Y.M. Chung, J. Wang, J. Power Sources 328 (2016) 586e598.
    • [22] G. Sikha, B.N. Popov, R.E. White, J. Electrochem. Soc. 151 (2004) A1104eA1114.
    • [23] S. Patankar, Numerical Heat Transfer and Fluid Flow, CRC press, 1980.
    • [24] T.R. Ashwin, G. Narasimham, S. Jacob, Int. J. Heat Mass Transf. 54 (2011) 3357e3368.
    • [25] S. Santhanagopalan, Q. Guo, P. Ramadass, R.E. White, J. Power Sources 156 (2006) 620e628.
    • [26] J. Vetter, P. Novak, M. Wagner, C. Veit, K.-C. Mo€ller, J. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. power sources 147 (2005) 269e281.
    • [27] P. Barai, A. Mistry, P.P. Mukherjee, Extreme Mech. Lett. (2016).
    • [28] M.B. Pinson, M.Z. Bazant, J. Electrochem. Soc. 160 (2013) A243eA250.
    • [29] Y. Troxler, B. Wu, M. Marinescu, V. Yufit, Y. Patel, A.J. Marquis, N.P. Brandon, G.J. Offer, J. Power Sources 247 (2014) 1018e1025.
    • [30] N. Yang, X. Zhang, G. Li, D. Hua, Appl. Therm. Eng. 80 (2015) 55e65.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article