LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Forder, Lewis; Bosten, Jenny; He, Xun; Franklin, Anna (2017)
Publisher: Nature Publishing Group
Journal: Scientific Reports
Languages: English
Types: Article
Subjects: Article
Since at least the 17th century there has been the idea that there are four simple and perceptually pure “unique” hues: red, yellow, green, and blue, and that all other hues are perceived as mixtures of these four hues. However, sustained scientific investigation has not yet provided solid evidence for a neural representation that separates the unique hues from other colors. We measured event-related potentials elicited from unique hues and the ‘intermediate’ hues in between them. We find a neural signature of the unique hues 230 ms after stimulus onset at a post-perceptual stage of visual processing. Specifically, the posterior P2 component over the parieto-occipital lobe peaked significantly earlier for the unique than for the intermediate hues (Z = −2.9, p = 0.004). Having identified a neural marker for unique hues, fundamental questions about the contribution of neural hardwiring, language and environment to the unique hues can now be addressed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. da Vinci, LA. Treatise on Paintin. g(George Bell & Sons, 1651).
    • 2. Pridmore, R. W. 14th century example of the four uniquCeohloruRees.s. Appl. 31, 364-365 (2006).
    • 3. Hering, E. Outlines of a theory of the light sense (Translated by Hurvich, L. M. & Jameson, D.). (HatryvaPrrdesUsn,1i8v7e8rs)i.
    • 4. Broackes, J. Where Do the Unique Hues Come froRmev?. Philo.Pssycho.l2, 601-628 (2011).
    • 5. Sternheim, C. E. & Boynton, R. M. Uniqueness of perceived hues investigated with a continuous judgmentJa.lExtpe.chnique. Psycho.l72, 770 (1966).
    • 6. Valberg, A. Unique hues: an old problem for a new generatViiosnio.n Re.s41, 1645-1657 (2001).
    • 7. Hård, A. & Sivik, L. NCS-Natural Color System: A Swedish Standard for Coloer NoCtoalotriRoens. Appl. 6, 129-138 (1981).
    • 8. Mollon, J. D. & Jordan, G. InJohn Dalton's colour vision legac3y81-392 (Taylor & Francis, 1997).
    • 9. Gumperz, J. J. & Levinson, S. C.Rethinking linguistic relat.i(vCiatmybridge University Press, 1996).
    • 10. Roberson, D., Davies, I. & Davidof, J. Color categories are not universal: replications and new evidmenacsetfornoe-age cultureJ. Exp. Psycho.lGen. 129, 369 (2000).
    • 11. Whorf, B. L. ISncience and linguisti(cesd. John, Carroll) (MIT Press, 1956).
    • 12. Berlin, B. & Kay, PB.asic color terms: their universality and evolut.i(oUnniversity of California, 1969).
    • 13. Kay, P. & Regier, T. Resolving the question of color naming uniPvreorcs.aNlsa.tl. Acad. Sci. 100, 9085-9089 (2003).
    • 14. Pinker, S.he Language Instinct: he New Science of Language and Min.d(HarperCollins, 1995).
    • 15. Byrne, A. & Tye, M. Qualia ain't in the hNoeûasd4.0, 241-255 (2006).
    • 16. Campbell, N. Why We Should Lower Our Expectations about the ExplanahtoeroyriGaa7p5., 34-51 (2009).
    • 17. Kalderon, M. E. Color PluralisPmh. ilo.Rsev. 116, 563-601 (2007).
    • 18. MacLaury, R. E. Color and cognition in Mesoameri:cCaonstructing categories as vantage.s(University of Texas press, 1997).
    • 19. Jameson, K. A. & Matthen, M. CInolor Ontology and Color Science179-202 (MIT Press, 2010).
    • 20. Stoughton, C. M. & Conway, B. R. Neural basis for unique hCuurer.s.Bio.l 18, R698-R699 (2008).
    • 21. De Valois, R. L., Abramov, I. & Jacobs, G. H. Analysis of Response Patterns of LGN CJ OelSlAs.56, 966-977 (1966).
    • 22. Jameson, K. & D'Andrade, R. In Color Categories in hought and Langua2ge95-319 (Cambridge University Press, 1997).
    • 23. Mollon, J. D. & Cavonius, C. R. ICnolour vision deiciencies VI4I7I3-483 (Springer, 1987).
    • 24. De Valois, R. L. & De Valois, K. K. A Multi-Stage Color MVoidseilo.n Re.s33, 1053-1065 (1993).
    • 25. Wuerger, S. M., Atkinson, P. & Cropper, S. he cone inputs to the unique-hue mechVainsiisomnsR.e.s45, 3210-3223 (2005).
    • 26. Mollon, J. D. A neural basis for unique hCuuersr?. Bio.l 19, R441-R442 (2009).
    • 27. Bohon, K. S., Hermann, K. L., Hansen, T. & Conway, B. R. Representation of Perceptual Color Space in Macaque PosteerriioorrInf Temporal Cortex (the V4 CompleNx)e.uro 3, (2016).
    • 28. Bosten, J. M. & Boehm, A. E. Empirical evidence for unique Jh.Oupets.?Soc. Am. A 31, A385 (2014).
    • 29. Mollon, J. Monge: the verriest lecture, Lyon, JulyV2i0s.0N5.eurosci. 23, 297-309 (2006).
    • 30. Saunders, B. A. C. & van Brakel, J. Are there nontrivial constraints on color categorBiezhatai.voBnra?in Sci.20, 167-228 (1997).
    • 31. Wool, L. E.et al. Salience of unique hues and implications for colorJ.tVhis.e1o5r,y1.-11 (2015).
    • 32. Luck, S. J. An Introduction to the Event-Related Potential Techni.q(MueIT Press, 2005).
    • 33. Malkoc, G., Kay, P. & Webster, M. A. Variations in normal color vision. IV. Binary hues and huJeOsScAalAin2g2., 2154-2168 (2005).
    • 34. MacLeod, D. I. & Boynton, R. M. Chromaticity diagram showing cone excitation by stimuli ofnecqeu. aJOlSlAum69i,n1a183-1186 (1979).
    • 35. Witzel, C. & Gegenfurtner, K. R. Categorical sensitivity to color diJ.fVeires.n1c3e,s1.-33 (2013).
    • 36. Bosten, J. M. & Lawrance-Owen, A. J. No diference in variability of unique hue selections and binary hueJ.sOelpet.cStoico.Ansm.. A 31, A357 (2014).
    • 37. Patel, S. H. & Azzam, P. N. Characterization of N200 and P300: selected studies of the event-relatInetdJpMotedenStci2a,l1.47-54 (2005).
    • 38. Di Russo, F., Martínez, A., Sereno, M. I., Pitzalis, S. & Hillyard, S. A. Cortical sources of the early comphoneevnitssuoalf etvoked potentiaHl.um. Brain Mapp. 15, 95-111 (2002).
    • 39. Anllo-Vento, L., Luck, S. J. & Hillyard, S. A. Spatio-temporal dynamics of atotceonltoiro: nevtidence from human electrophysiology. Hum. Brain Mapp. 6, 216-238 (1998).
    • 40. Latinus, M. & Taylor, M. J. Face processing stagIems:pact of diiculty and the separation of eBfreacitns.Res. 1123, 179-187 (2006).
    • 41. Qu, Z., Song, Y. & Ding, Y. ERP evidence for distinct mechanisms of fast and slow visual perceptuaNleulreoaprsnyicnhg.ologi4a8, 1869-1874 (2010).
    • 42. Song, Y. et al. Neural correlates of short-term perceptual learning in orientation discrimination indelxaetdebdypeovteenntt-rieals. Chi.nSci. Bull. 52, 352-357 (2007).
    • 43. Lefebvre, C. D., Marchand, Y., Eskes, G. A. & Connolly, J. F. Assessment of working memory abilsitnigeasnuevent-related brain potential (ERP)-compatible digit span backwardCltian.skN.europhysi.o1l16, 1665-1680 (2005).
    • 44. Kotsoni, E., Csibra, G., Mareschal, D. & Johnson, M. H. Electrophysiological correlates of commonal-omnsaestkivnigs.u Neuropsychologi4a5, 2285-2293 (2007).
    • 45. Straube, S. & Fahle, M. he electrophysiological correlate of saliency: Evidence from a igure-kd.eBtreacitniRoens. t13as07, 89-102 (2010).
    • 46. Machilsen, B., Novitskiy, N., Vancleef, K. & Wagemans, J. Context Modulates the ERP SignatouurreIonfteCgorantionP.LoS One 6, e25151 (2011).
    • 47. Kellenbach, M. L., Wijers, A. A., Hovius, M., Mulder, J. & Mulder, G. Neural diferentiation of lexico-syntactic categories or seman features? Event-related potential evidence foJr. bCootgnh. N.eurosci. 14, 561-577 (2002).
    • 48. Keil, A. & Müller, M. M. Feature selection in the human brain: Electrophyrsrieloaltoegsiocaflsecnosory enhancement and feature integratioBnr.ain Res. 1313, 172-184 (2010).
    • 49. Clark, V. P. & Hillyard, S. A. Spatial selective attention afects early extrasottrisattreiabtuetcnomponents of the visual evoked potentiaJl. .Cogn. Neurosci. 8, 387-402 (1996).
    • 50. Johannes, S., Münte, T. F., Heinze, H. J. & Mangun, G. R. Lumainnce and spatial attention efects on early visual prgo.cCesosginn. Brain Res. 2, 189-205 (1995).
    • 51. Luck, S. J., Heinze, H. J., Mangun, G. R. & Hillyard, S. A. Visual event-related potentials index focuisoedn awtittehntin bilateral stimulus arrays. II. Functional dissociation of P1 and N1 compoEnleecntrtose.ncephalog.rClin. Neurophysi.o7l5, 528-542 (1990).
    • 52. Talsma, D. & Kok, A. Intermodal spatial attention differs between vision and audition: Atneedvpenot-ernetliaal analysis. Psychophysiolo3g9y, 689-706 (2002).
    • 53. Davies, I. R. & Corbett, G. G. A cross-cultural study of croglrouping: Evidence for weak linguistic relatBir.vJi. tPys.ycho.l88, 493-517 (1997).
    • 54. Boynton, R. M. & Olson, C. X. Locating basic colors in the OSA Cspoalocre.Res. Appl. 12, 94-105 (1987).
    • 55. Boynton, R. M. & Olson, C. X. Salience of chromatic basic color terms conirmed by three mVieasisuornesR.e.s30, 1311-1317 (1990).
    • 56. Sturges, J. & Whitield, T. W. Locating basic colours in the MunsCelollosrpRaecse..Appl. 20, 364-376 (1995).
    • 57. Kuehni, R. G. Focal Color Variability and Unique Hue Stimulus VaJ.riCaobginl.iCtuylt.. 5, 409-426 (2005).
    • 58. Miyahara, E. Focal colors and unique hPuerecse.pt. Mot. Skills97, 1038-1042 (2003).
    • 59. Witzel, C. & Franklin, A. Do focal colors look particularly 'cJoOloprtfSuolc'A?m A 31, A1-A10 (2014).
    • 60. Lindsey, D. T.et al. Color Channels, Not Color Appearance or Color Categories, Guide Visual Search for DdeCsaotluoraTtaergets. Psycho.lSci. 21, 1208-1214 (2010).
    • 61. Welbourne, L. E., Morland, A. B. & Wade, A. R. Human colour perception changes between seasCounrsr.. Bio.l 25, R635-R653 (2015).
    • 62. Lafer-Sousa, R., Liu, Y. O., Lafer-Sousa, L., Wiest, M. C. & Conway, B. R. Color tuning in alert macaque V1 assessed witnhd fMRI a single-unit recording shows a bias toward daylighJtOcSoAlAor2s.9, 657-670 (2012).
    • 63. Bosten, J. M., Beer, R. D. & MacLeod, D. I. A. What is whJ.iVtie?s. 15, 5 (2015).
    • 64. Philipona, D. L. & O'regan, J. K. Color naming, unique hues, and hue cancellation predicted from singuleacrittiiones in ref propertiesV.is. Neurosci. 23, 331-339 (2006).
    • 65. Witzel, C., Cinotti, F. & O'Regan, K. What determines the relationship between color naming, unique hugeus,laanrditseineso:ry sin Illuminations, surfaces, or photorecepJ.tVoirss.?15, 1-32 (2015).
    • 66. Webster, M. A.et al. Variations in normal color vision. III. Unique hues in Indian and United Stvaetress. JoObSseAr A 19, 1951-1962 (2002).
    • 67. IshiharaI,sSh.ihara test for colo-bulrindness. (Kanehara & Co. Ltd, 1987).
    • 68. Fletcher, hR. e City University Colour Vision T.e(sKt eeler, 1980).
    • 69. Brainard, D. H. he psychophysics toolSbpoaxt. Vis. 10, 433-436 (1997).
    • 70. Vingrys, A. J. & King-Smith, P. E. Factors in Using Color Video Monitors for Assessment of Visual Cholroers hReos.lAdps.pl. 11, S57-S62 (1986).
    • 71. Rugg, M. D. & Coles, M. G. H.Electrophysiology of Mi:nEdvent-related Brain Potentials and Cogniti.o(nOUP Oxford, 1996).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | CATEGORIES

Cite this article