LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Forder, Lewis; Bosten, Jenny; He, Xun; Franklin, Anna (2017)
Publisher: Nature Publishing Group
Journal: Scientific Reports
Languages: English
Types: Article
Subjects: Article
Since at least the 17th century there has been the idea that there are four simple and perceptually pure ?unique? hues: red, yellow, green, and blue, and that all other hues are perceived as mixtures of these four hues. However, sustained scientific investigation has not yet provided solid evidence for a neural representation that separates the unique hues from other colors. We measured event-related potentials elicited from unique hues and the ?intermediate? hues in between them. We find a neural signature of the unique hues 230?ms after stimulus onset at a post-perceptual stage of visual processing. Specifically, the posterior P2 component over the parieto-occipital lobe peaked significantly earlier for the unique than for the intermediate hues (Z?=??2.9, p?=?0.004). Having identified a neural marker for unique hues, fundamental questions about the contribution of neural hardwiring, language and environment to the unique hues can now be addressed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. da Vinci, L. A Treatise on Painting. (George Bell & Sons, 1651).
    • 2. Pridmore, R. W. 14th century example of the four unique hues. Color Res. Appl. 31, 364-365 (2006).
    • 3. Hering, E. Outlines of a theory of the light sense (Translated by Hurvich, L. M. & Jameson, D.). (Harvard University Press, 1878).
    • 4. Broackes, J. Where Do the Unique Hues Come from? Rev. Philos. Psychol. 2, 601-628 (2011).
    • 5. Sternheim, C. E. & Boynton, R. M. Uniqueness of perceived hues investigated with a continuous judgmental technique. J. Exp. Psychol. 72, 770 (1966).
    • 6. Valberg, A. Unique hues: an old problem for a new generation. Vision Res. 41, 1645-1657 (2001).
    • 7. Hård, A. & Sivik, L. NCS-Natural Color System: A Swedish Standard for Coloer Notation. Color Res. Appl. 6, 129-138 (1981).
    • 8. Mollon, J. D. & Jordan, G. In John Dalton's colour vision legacy 381-392 (Taylor & Francis, 1997).
    • 9. Gumperz, J. J. & Levinson, S. C. Rethinking linguistic relativity. (Cambridge University Press, 1996).
    • 10. Roberson, D., Davies, I. & Davido,f J. Color categories are not universal: replications and new evidence from a stone-age culture. J. Exp. Psychol. Gen. 129, 369 (2000).
    • 11. Whorf, B. L. In Science and linguistics (ed. John, Carroll) (MIT Press, 1956).
    • 12. Berlin, B. & Kay, P. Basic color terms: their universality and evolution. (University of California, 1969).
    • 13. Kay, P. & Regier, T. Resolving the question of color naming universals. Proc. Natl. Acad. Sci. 100, 9085-9089 (2003).
    • 14. Pinker, S. eTh Language Instinct: ehT New Science of Language and Mind. (HarperCollins, 1995).
    • 15. Byrne, A. & Tye, M. Qualia ain't in the head. Noûs 40, 241-255 (2006).
    • 16. Campbell, N. Why We Should Lower Our Expectations about the Explanatory Gap. eThoria 75, 34-51 (2009).
    • 17. Kalderon, M. E. Color Pluralism. Philos. Rev. 116, 563-601 (2007).
    • 18. MacLaury, R. E. Color and cognition in Mesoamerica: Constructing categories as vantages. (University of Texas press, 1997).
    • 19. Jameson, K. A. & Matthen, M. In Color Ontology and Color Science 179-202 (MIT Press, 2010).
    • 20. Stoughton, C. M. & Conway, B. R. Neural basis for unique hues. Curr. Biol. 18, R698-R699 (2008).
    • 21. De Valois, R. L., Abramov, I. & Jacobs, G. H. Analysis of Response Patterns of LGN Cells. JOSA 56, 966-977 (1966).
    • 22. Jameson, K. & D'Andrade, R. In Color Categories in oThught and Language 295-319 (Cambridge University Press, 1997).
    • 23. Mollon, J. D. & Cavonius, C. R. In Colour vision decfiiencies VIII 473-483 (Springer, 1987).
    • 24. De Valois, R. L. & De Valois, K. K. A Multi-Stage Color Model. Vision Res. 33, 1053-1065 (1993).
    • 25. Wuerger, S. M., Atkinson, P. & Cropper, S. eTh cone inputs to the unique-hue mechanisms. Vision Res . 45, 3210-3223 (2005).
    • 26. Mollon, J. D. A neural basis for unique hues? Curr. Biol. 19, R441-R442 (2009).
    • 27. Bohon, K. S., Hermann, K. L., Hansen, T. & Conway, B. R. Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4 Complex). eNeuro 3, (2016).
    • 28. Bosten, J. M. & Boehm, A. E. Empirical evidence for unique hues? J. Opt. Soc. Am. A 31, A385 (2014).
    • 29. Mollon, J. Monge: the verriest lecture, Lyon, July 2005. Vis. Neurosci. 23, 297-309 (2006).
    • 30. Saunders, B. A. C. & van Brakel, J. Are there nontrivial constraints on color categorization? Behav. Brain Sci. 20, 167-228 (1997).
    • 31. Wool, L. E. et al. Salience of unique hues and implications for color theory. J. Vis. 15, 1-11 (2015).
    • 32. Luck, S. J. An Introduction to the Event-Related Potential Technique. (MIT Press, 2005).
    • 33. Malkoc, G., Kay, P. & Webster, M. A. Variations in normal color vision. IV. Binary hues and hue scaling. JOSA A 22, 2154-2168 (2005).
    • 34. MacLeod, D. I. & Boynton, R. M. Chromaticity diagram showing cone excitation by stimuli of equal luminance. JOSA 69, 1183-1186 (1979).
    • 35. Witzel, C. & Gegenfurtner, K. R. Categorical sensitivity to color diefrences. J. Vis. 13, 1-33 (2013).
    • 36. Bosten, J. M. & Lawrance-Owen, A. J. No diefrence in variability of unique hue selections and binary hue selections. J . Opt. Soc. Am. A 31, A357 (2014).
    • 37. Patel, S. H. & Azzam, P. N. Characterization of N200 and P300: selected studies of the event-related potential. Int J Med Sci 2, 147-54 (2005).
    • 38. Di Russo, F., Martínez, A., Sereno, M. I., Pitzalis, S. & Hillyard, S. A. Cortical sources of the early components of the visual evoked potential. Hum. Brain Mapp. 15, 95-111 (2002).
    • 39. Anllo-Vento, L., Luck, S. J. & Hillyard, S. A. Spatio-temporal dynamics of attention to color: evidence from human electrophysiology. Hum. Brain Mapp. 6, 216-238 (1998).
    • 40. Latinus, M. & Taylor, M. J. Face processing stages: Impact of dicfiulty and the separation of eefcts. Brain Res. 1123, 179-187 (2006).
    • 41. Qu, Z., Song, Y. & Ding, Y. ERP evidence for distinct mechanisms of fast and slow visual perceptual learning. Neuropsychologia 48, 1869-1874 (2010).
    • 42. Song, Y. et al. Neural correlates of short-term perceptual learning in orientation discrimination indexed by event-related potentials. Chin. Sci. Bull. 52, 352-357 (2007).
    • 43. Lefebvre, C. D., Marchand, Y., Eskes, G. A. & Connolly, J. F. Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task. Clin. Neurophysiol. 116, 1665-1680 (2005).
    • 44. Kotsoni, E., Csibra, G., Mareschal, D. & Johnson, M. H. Electrophysiological correlates of common-onset visual masking. Neuropsychologia 45, 2285-2293 (2007).
    • 45. Straube, S. & Fahle, M. eTh electrophysiological correlate of saliency: Evidence from a gfiure-detection task. Brain Res . 1307, 89-102 (2010).
    • 46. Machilsen, B., Novitskiy, N., Vancleef, K. & Wagemans, J. Context Modulates the ERP Signature of Contour Integration. PLoS One 6, e25151 (2011).
    • 47. Kellenbach, M. L., Wijers, A. A., Hovius, M., Mulder, J. & Mulder, G. Neural diefrentiation of lexico-syntactic categories or semantic features? Event-related potential evidence for both. J. Cogn. Neurosci. 14, 561-577 (2002).
    • 48. Keil, A. & Müller, M. M. Feature selection in the human brain: Electrophysiological correlates of sensory enhancement and feature integration. Brain Res. 1313, 172-184 (2010).
    • 49. Clark, V. P. & Hillyard, S. A. Spatial selective attention afects early extrastriate but not striate components of the visual evoked potential. J. Cogn. Neurosci. 8, 387-402 (1996).
    • 50. Johannes, S., Münte, T. F., Heinze, H. J. & Mangun, G. R. Luminance and spatial attention eefcts on early visual processing. Cogn . Brain Res. 2, 189-205 (1995).
    • 51. Luck, S. J., Heinze, H. J., Mangun, G. R. & Hillyard, S. A. Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr. Clin. Neurophysiol. 75, 528-542 (1990).
    • 52. Talsma, D. & Kok, A. Intermodal spatial attention differs between vision and audition: An event-related potential analysis. Psychophysiology 39, 689-706 (2002).
    • 53. Davies, I. R. & Corbett, G. G. A cross-cultural study of colour grouping: Evidence for weak linguistic relativity. Br. J. Psychol. 88, 493-517 (1997).
    • 54. Boynton, R. M. & Olson, C. X. Locating basic colors in the OSA space. Color Res. Appl. 12, 94-105 (1987).
    • 55. Boynton, R. M. & Olson, C. X. Salience of chromatic basic color terms confirmed by three measures. Vision Res . 30, 1311-1317 (1990).
    • 56. Sturges, J. & Whitfield, T. W. Locating basic colours in the Munsell space. Color Res . Appl. 20, 364-376 (1995).
    • 57. Kuehni, R. G. Focal Color Variability and Unique Hue Stimulus Variability. J. Cogn. Cult. 5, 409-426 (2005).
    • 58. Miyahara, E. Focal colors and unique hues. Percept. Mot. Skills 97, 1038-1042 (2003).
    • 59. Witzel, C. & Franklin, A. Do focal colors look particularly 'colorful'? J Opt Soc Am A 31, A1-A10 (2014).
    • 60. Lindsey, D. T. et al. Color Channels, Not Color Appearance or Color Categories, Guide Visual Search for Desaturated Color Targets. Psychol. Sci. 21, 1208-1214 (2010).
    • 61. Welbourne, L. E., Morland, A. B. & Wade, A. R. Human colour perception changes between seasons. Curr. Biol. 25, R635-R653 (2015).
    • 62. Lafer-Sousa, R., Liu, Y. O., Lafer-Sousa, L., Wiest, M. C. & Conway, B. R. Color tuning in alert macaque V1 assessed with fMRI and single-unit recording shows a bias toward daylight colors. JOSA A 29, 657-670 (2012).
    • 63. Bosten, J. M., Beer, R. D. & MacLeod, D. I. A. What is white? J. Vis. 15, 5 (2015).
    • 64. Philipona, D. L. & O'regan, J. K. Color naming, unique hues, and hue cancellation predicted from singularities in reflection properties. Vis. Neurosci. 23, 331-339 (2006).
    • 65. Witzel, C., Cinotti, F. & O'Regan, K. What determines the relationship between color naming, unique hues, and sensory singularities: Illuminations, surfaces, or photoreceptors? J. Vis. 15, 1-32 (2015).
    • 66. Webster, M. A. et al. Variations in normal color vision. III. Unique hues in Indian and United States observers. JOSA A 19, 1951-1962 (2002).
    • 67. Ishihara, S. Ishihara test for colour-blindness. (Kanehara & Co. Ltd, 1987).
    • 68. Fletcher, R. eTh City University Colour Vision Test. (Keeler, 1980).
    • 69. Brainard, D. H. eTh psychophysics toolbox. Spat . Vis. 10, 433-436 (1997).
    • 70. Vingrys, A. J. & King-Smith, P. E. Factors in Using Color Video Monitors for Assessment of Visual Thresholds. Color Res . Appl. 11, S57-S62 (1986).
    • 71. Rugg, M. D. & Coles, M. G. H. Electrophysiology of Mind: Event-related Brain Potentials and Cognition. (OUP Oxford, 1996).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | CATEGORIES

Cite this article