LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mistry, Shailesh N.; Drinkwater, Nyssa; Ruggeri, Chiara; Sivaraman, Komagal Kannan; Loganathan, Sasdekumar; Fletcher, Sabine; Drag, Marcin; Paiardini, Alessandro; Avery, Vicky M.; Scammells, Peter J.; McGowan, Sheena (2014)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: parasitic diseases
Identifiers:doi:10.1021/jm501323a
Plasmodium parasites, the causative agents of malaria, have developed resistance to most of our current antimalarial therapies, including artemisinin combination therapies which are widely described as our last line of defense. Antimalarial agents with a novel mode of action are urgently required. Two Plasmodium falciparum aminopeptidases, PfA-M1 and PfA-M17, play crucial roles in the erythrocytic stage of infection and have been validated as potential antimalarial targets. Using compound-bound crystal structures of both enzymes, we have used a structure-guided approach to develop a novel series of inhibitors capable of potent inhibition of both PfA-M1 and PfA-M17 activity and parasite growth in culture. Herein we describe the design, synthesis, and evaluation of a series of hydroxamic acid-based inhibitors and demonstrate the compounds to be exciting new leads for the development of novel antimalarial therapeutics.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Liu, J.; Istvan, E. S.; Gluzman, I. Y.; Gross, J.; Goldberg, D. E.
    • Natl. Acad. Sci. U.S.A. 2006, 103, 8840−8845.
    • (2) Rosenthal, P. J. Hydrolysis of erythrocyte proteins by proteases of malaria parasites. Curr. Opin. Hematol. 2002, 9, 140−145.
    • (3) Lew, V. L.; Macdonald, L.; Ginsburg, H.; Krugliak, M.; Tiffert, T.
    • Excess haemoglobin digestion by malaria parasites: a strategy to prevent premature host cell lysis. Blood Cells Mol. Dis. 2004, 32, 353− 359.
    • (4) Klemba, M.; Gluzman, I.; Goldberg, D. E. A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation. J. Biol. Chem. 2004, 279, 43000−43007.
    • (5) Stack, C. M.; Lowther, J.; Cunningham, E.; Donnelly, S.; Gardiner, D. L.; Trenholme, K. R.; Skinner-Adams, T. S.; Teuscher, F.; Grembecka, J.; Mucha, A.; Kafarski, P.; Lua, L.; Bell, A.; Dalton, J. P.
    • Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. J. Biol. Chem. 2007, 282, 2069− 2080.
    • (6) McGowan, S. Working in concert: the metalloaminopeptidases from Plasmodium falciparum. Curr. Opin. Struct. Biol. 2013, 23, 828− 835.
    • (7) McGowan, S.; Porter, C. J.; Lowther, J.; Stack, C. M.; Golding, S.
    • M.; Grembecka, J.; Mucha, A.; Kafarski, P.; Degori, R.; Buckle, A. M.; Gardiner, D. L.; Whisstock, J. C.; Dalton, J. P. Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 2537−2542.
    • (8) Skinner-Adams, T. S.; Lowther, J.; Teuscher, F.; Stack, C. M.; Grembecka, J.; Mucha, A.; Kafarski, P.; Trenholme, K. R.; Dalton, J. P.; Gardiner, D. L. Identification of phosphinate dipeptide analog inhibitors directed against the Plasmodium falciparum M17 leucine aminopeptidase as lead antimalarial compounds. J. Med. Chem. 2007, 50, 6024−6031.
    • (9) McGowan, S.; Oellig, C. A.; Birru, W. A.; Caradoc-Davies, T. T.; Stack, C. M.; Lowther, J.; Skinner-Adams, T.; Mucha, A.; Kafarski, P.; Grembecka, J.; Trenholme, K. R.; Buckle, A. M.; Gardiner, D. L.; Dalton, J. P.; Whisstock, J. C. Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 2449−2454.
    • (10) Deprez-Poulain, R.; Flipo, M.; Piveteau, C.; Leroux, F.; Dassonneville, S.; Florent, I.; Maes, L.; Cos, P.; Deprez, B.
    • Structure−activity relationships and blood distribution of antiplasmodial aminopeptidase-1 inhibitors. J. Med. Chem. 2012, 55, 10909− 10917.
    • (11) Flipo, M.; Beghyn, T.; Leroux, V.; Florent, I.; Deprez, B. P.; Deprez-Poulain, R. F. Novel selective inhibitors of the zinc plasmodial aminopeptidase PfA-M1 as potential antimalarial agents. J. Med. Chem.
    • (12) Flipo, M.; Florent, I.; Grellier, P.; Sergheraert, C.; DeprezPoulain, R. Design, synthesis and antimalarial activity of novel, quinoline-based, zinc metallo-aminopeptidase inhibitors. Bioorg. Med.
    • Chem. Lett. 2003, 13, 2659−2662.
    • (13) Kannan Sivaraman, K.; Paiardini, A.; Sienczyk, M.; Ruggeri, C.; Oellig, C. A.; Dalton, J. P.; Scammells, P. J.; Drag, M.; McGowan, S.
    • Synthesis and structure−activity relationships of phosphonic arginine mimetics as inhibitors of the M1 and M17 aminopeptidases from Plasmodium falciparum. J. Med. Chem. 2013, 56, 5213−5217.
    • (14) Freedman, L. D.; Doak, G. O. The preparation and properties of phosphonic acids. Chem. Rev. 1957, 57, 479−523.
    • (15) Babine, R. E.; Bender, S. L. Molecular recognition of proteinligand complexes: applications to drug design. Chem. Rev. 1997, 97, 1359−1472.
    • (16) Sang, Q.; Jin, Y.; Newcomer, R. G. Matrix metalloproteinase inhibitors as prospective agents for the prevention and treatment of cardiovascular and neoplastic diseases. Curr. Top. Med. Chem. 2006, 6, 289−316.
    • (17) Flipo, M.; Charton, J.; Hocine, A.; Dassonneville, S.; Deprez, B.; Deprez-Poulain, R. Hydroxamates: relationships between structure and plasma stability. J. Med. Chem. 2009, 52, 6790−6802.
    • (18) Mucha, A.; Drag, M.; Dalton, J. P.; Kafarski, P. Metalloaminopeptidase inhibitors. Biochimie 2010, 92, 1509−1529.
    • (19) Taillefer, M.; Xia, N.; Ouali, A. Efficient iron/copper cocatalyzed arylation of nitrogen nucleophiles. Angew. Chem., Int. Ed.
    • (20) Swapna, K.; Murthy, S. N. Copper iodide as a recyclable catalyst for Buchwald N-arylation. Eur. J. Org. Chem. 2010, 34, 6678−6684.
    • (21) Correa, A.; Bolm, C. Ligand-free copper-catalyzed N-arylation of nitrogen nucleophiles. Adv. Synth. Catal. 2007, 2673−2676.
    • (22) Zou, B.; Yuan, Q.; Ma, D. Cascade coupling/cyclization process to N-substituted 1,3-dihydrobenzimidazol-2-ones. Org. Lett. 2007, 9, 4291−4294.
    • (23) Sreedhar, B.; Arundhathi, R.; Reddy, P. L.; Reddy, M. A.; Lakshmi Kantam, M. Cu-Al hydrotalcite: an efficient and reusable ligand-free catalyst for the coupling of aryl chlorides with aliphatic, aromatic, and N (H)-heterocyclic amines. Synthesis 2009, 2517−2522.
    • (24) Tubaro, C.; Biffis, A.; Scattolin, E.; Basato, M. Efficient catalysis of Ullmann-type arylation reactions by a novel trinuclear copper(I) complex with a chelating tricarbene ligand. Tetrahedron 2008, 64, 4187−4195.
    • (25) Uk Son, S.; Kyu Park, I.; Park, J.; Hyeon, T. Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmanntype amination coupling reactions of aryl chlorides. Chem. Commun.
    • (Cambridge, U.K.) 2004, 778−779.
    • (26) Li, L.; Zhu, L.; Chen, D.; Hu, X.; Wang, R. Use of acylhydrazineand acylhydrazone-type ligands to promote CuI-catalyzed C−N crosscoupling reactions of aryl bromides with N-heterocycles. Eur. J. Org.
    • Chem. 2011, 2011, 2692−2696.
    • (27) Oshovsky, G. V.; Ouali, A.; Xia, N.; Zablocka, M.; Boere,́ R. T.; Duhayon, C.; Taillefer, M.; Majoral, J. P. Thiazolyl phosphine ligands for copper-catalyzed arylation and vinylation of nucleophiles in organic and aqueous media. Organometallics 2008, 27, 5733−5736.
    • (28) Biffis, A.; Tubaro, C.; Scattolin, E.; Basato, M.; Papini, G.; Santini, C.; Alvarez, E.; Conejero, S. Trinuclear copper(I) complexes with triscarbene ligands: catalysis of C-N and C-C coupling reactions.
    • Dalton Trans. 2009, 7223−7229.
    • (29) Joseph, P.; Priyadarshini, S.; Kantam, M. L. Sulfonic acid containing cation-exchanger resin “INDION-770” and copper (I) salts: a novel reusable catalyst for N-arylation of NH-heterocycles with haloarenes. Catal. Sci. Technol. 2011, 234−238.
    • (30) Chouhan, G.; Wang, D.; Alper, H. Magnetic nanoparticlesupported proline as a recyclable and recoverable ligand for the CuI catalyzed arylation of nitrogen nucleophiles. Chem. Commun. (Cambridge, U.K.) 2007, 4809−4811.
    • (31) Cristau, H. J.; Cellier, P. P.; Spindler, J. F.; Taillefer, M. Mild conditions for copper-catalysed N-arylation of pyrazoles. Eur. J. Org.
    • Chem. 2004, 695−709.
    • (32) Xu, Z.-L.; Li, H.-X.; Ren, Z.-G.; Du, W.-Y.; Xu, W.-C.; Lang, J.-P.
    • Cu(OAc)2·H2O-catalyzed N-arylation of nitrogen-containing heterocycles. Tetrahedron 2011, 67, 5282−5288.
    • (33) Li, F.; Hor, T. S. A. Facile synthesis of nitrogen tetradentate ligands and their applications in CuI-catalyzed N-arylation and azidealkyne cycloaddition. Chem.Eur. J. 2009, 15, 10585−10592.
    • (34) Wadhwa, K.; Yang, C.; West, P. R.; Deming, K. C.; Chemburkar, S. R.; Reddy, R. E. Synthesis of arylglyoxylic acids and their collisioninduced dissociation. Synth. Commun. 2013, 38, 4434−4444.
    • (35) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures. J.
    • Org. Chem. 1996, 61, 3849−3862.
    • (36) Usachova, N.; Leitis, G.; Jirgensons, A.; Kalvinsh, I. Synthesis of hydroxamic acids by activation of carboxylic acids with N,N′- carbonyldiimidazole: exploring the efficiency of the method. Synth.
    • Commun. 2013, 40, 927−935.
    • (37) Tufariello, J. J.; Winzenberg, K. A. Nitrone-based synthesis of the pyrrolizidine alkaloid croalbinecine. Tetrahedron Lett. 1986, 27, 1645−1648.
    • (38) Chowdhury, N.; Dasgupta, S.; Pradeep Singh, N. D.
    • Bioorg. Med. Chem. Lett. 2012, 22, 4668−4671.
    • (39) Riva, E.; Gagliardi, S.; Mazzoni, C.; Passarella, D.; Rencurosi, A.; Vigo, D.; Martinelli, M. Efficient continuous flow synthesis of hydroxamic acids and suberoylanilide hydroxamic acid preparation. J.
    • Org. Chem. 2013, 74, 3540−3543.
    • (40) Huang, Q.; Mao, J.; Wan, B.; Wang, Y.; Brun, R.; Franzblau, S.
    • G.; Kozikowski, A. P. Searching for new cures for tuberculosis: design, synthesis, and biological evaluation of 2-methylbenzothiazoles. J. Med.
    • Chem. 2013, 52, 6757−6767.
    • (41) Zmitek, J.; Verhnjak, K.; Urleb, U.; Kotnik, S. Synthesis of (+)-(S)-ibuproxam and preparation of some new complexes of racemic and (+)-(S)-ibuproxam with B-cyclodextrin and its derivatives.
    • Chirality 1995, 7, 206−210.
    • (42) Watkins, C. J.; Romero Maria Rosario, M.; Finn, P. W.; Kalvinsh, I.; Loza, E.; Lolya, D.; Starchenkov, I.; Bokaldere, R. M.; Semenikhina, V.; Harris, C. J.; Duffy, J. E. S. Carbamic acid compounds comprising an ether linkage as HDAC inhibitors. Patent WO2002026703 A1, 2002.
    • (43) Liguori, A.; Sindona, G.; Romeo, G.; Uccella, N. Direct conversion of hydroxamic acids into nitriles. Synthesis 1987, 1987, 168−168.
    • (44) Massaro, A.; Mordini, A.; Reginato, G.; Russo, F.; Taddei, M.
    • Synthesis 2007, 2007, 3201−3204.
    • (45) Sivaraman, K. K.; Oellig, C. A.; Huynh, K.; Atkinson, S. C.; Poreba, M.; Perugini, M. A.; Trenholme, K. R.; Gardiner, D. L.; Salvesen, G.; Drag, M.; Dalton, J. P.; Whisstock, J. C.; McGowan, S. Xray crystal structure and specificity of the Plasmodium falciparum malaria aminopeptidase PfM18AAP. J. Mol. Biol. 2012, 422, 495−507.
    • (46) Poreba, M.; McGowan, S.; Skinner-Adams, T.; Trenholme, K.
    • R.; Gardiner, D. L.; Whisstock, J. C.; To, J.; Salvesen, G. S.; Drag, M.; Dalton, J. P. Fingerprinting the substrate specificity of M1 and M17 neutral aminopeptidases of human malaria, Plasmodium falciparum.
    • PLoS One 2012, 2, e31938.
    • (47) Duffy, S.; Avery, V. M. Development and optimization of a novel 384-well anti-malarial imaging assay validated for highthroughput screening. Am. J. Trop. Med. Hyg. 2012, 86, 84−92.
    • (48) Lee, J.; Shim, J. S.; Jung, S. A.; Lee, S. T.; Kwon, H. J. NHydroxy-2-(naphthalene-2-ylsulfanyl)-acetamide, a novel hydroxamic acid-based inhibitor of aminopeptidase N and its anti-angiogenic activity. Bioorg. Med. Chem. Lett. 2005, 15, 181−183.
    • (49) Wickstrom, M.; Larsson, R.; Nygren, P.; Gullbo, J.; Aminopeptidase, N. (CD13) as a target for cancer chemotherapy.
    • Cancer Sci. 2011, 102, 501−508.
    • (50) Hitzerd, S. M.; Verbrugge, S. E.; Ossenkoppele, G.; Jansen, G.; Peters, G. J. Positioning of aminopeptidase inhibitors in next generation cancer therapy. Amino Acids 2014, 46, 793−808.
    • (51) Changklungmoa, N.; Chaithirayanon, K.; Kueakhai, P.; Meemon, K.; Riengrojpitak, S.; Sobhon, P. Molecular cloning and characterization of leucine aminopeptidase from Fasciola gigantica. Exp.
    • Parasitol. 2012, 131, 283−291.
    • (52) Didier, E. S.; Maddry, J. A.; Brindley, P. J.; Stovall, M. E.; Didier, P. J. Therapeutic strategies for human microsporidia infections. Expert Rev. Anti-Infect. Ther. 2005, 3, 419−434.
    • (53) Carroll, R. K.; Veillard, F.; Gagne, D. T.; Lindenmuth, J. M.; Poreba, M.; Drag, M.; Potempa, J.; Shaw, L. N. The Staphylococcus aureus leucine aminopeptidase is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine.
    • Biol. Chem. 2013, 394, 791−803.
    • (54) Dong, L.; Cheng, N.; Wang, M. W.; Zhang, J.; Shu, C.; Zhu, D.
    • X. The leucyl aminopeptidase from Helicobacter pylori is an allosteric enzyme. Microbiology 2005, 151, 2017−2023.
    • (55) Battye, T. G.; Kontogiannis, L.; Johnson, O.; Powell, H. R.; AG, L. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta. Crystallogr., D: Biol. Crystallogr.
    • (56) Kabsch, W. XDS. Acta Crystallogr., D: Biol. Crystallogr. 2010, 66, 125−132.
    • (57) Evans, P. Scaling and assessment of data quality. Acta Crystallogr., D: Biol. Crystallogr. 2006, 62, 72−82.
    • (58) Evans, P. R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr., D: Biol.
    • Crystallogr. 2011, 67, 282−292.
    • (59) CCP4.. The CCP4 suite: programs for protein crystallography.
    • Acta Crystallogr., D: Biol. Crystallogr. 1994, D50, 760−763.
    • (60) Brunger, A. T. Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr., D: Biol.
    • Crystallogr. 1993, 49, 24−36.
    • (61) Adams, P. D.; Afonine, P. V.; Bunkoćzi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L.-W.; Kapral, G. J.; GrosseKunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R.
    • PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr., D: Biol. Crystallogr. 2010, D66, 213−221.
    • (62) Afonine, P. V.; Grosse-Kunstleve, R. W.; Echols, N.; Headd, J. J.; Moriarty, N. W.; Mustyakimov, M.; Terwilliger, T. C.; Urzhumtsev, A.; Zwart, P. H.; Adams, P. D. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr., D: Biol.
    • Crystallogr. 2012, D68, 352−367.
    • (63) Harbut, M. B.; Velmourougane, G.; Dalal, S.; Reiss, G.; Whisstock, J. C.; Onder, O.; Brisson, D.; McGowan, S.; Klemba, M.; Greenbaum, D. C. Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proc.
    • Natl. Acad. Sci. U.S.A. 2011, 108, E526−E534.
    • (64) Velmourougane, G.; Harbut, M. B.; Dalal, S.; McGowan, S.; Oellig, C. A.; Meinhardt, N.; Whisstock, J. C.; Klemba, M.; Greenbaum, D. C. Synthesis of new (−)-bestatin-based inhibitor libraries reveals a novel binding mode in the S1 pocket of the essential malaria M1 metalloaminopeptidase. J. Med. Chem. 2011, 54, 1655− 1666.
    • (65) Androulakis, S.; Schmidberger, J.; Bate, M. A.; DeGori, R.; Beitz, A.; Keong, C.; Cameron, B.; McGowan, S.; Porter, C. J.; Harrison, A.; Hunter, J.; Martin, J. L.; Kobe, B.; Dobson, R. C.; Parker, M. W.; Whisstock, J. C.; Gray, J.; Treloar, A.; Groenewegen, D.; Dickson, N.; Buckle, A. M. Federated repositories of X-ray diffraction images. Acta Crystallogr., D: Biol. Crystallogr. 2008, D64, 810−814.
    • (66) Meyer, G. R.; Aragao, D.; Mudie, N. J.; Caradoc-Davies, T. T.; McGowan, S.; Bertling, P. J.; Groenewegen, D.; Quenette, S. M.; Bond, C. S.; Buckle, A. M.; Androulakis, S. Operation of the Australian Store.Synchrotron for macromolecular crystallography. Acta Crystallogr., D: Biol. Crystallogr. 2014, D70, 2510−2519.
    • (67) Schüttelkopf, A. W.; van Aalten, D. M. F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr., D: Biol. Crystallogr. 2004, D60, 1355−1363.
    • (68) Eswar, N.; Eramian, D.; Webb, B.; Shen, M.; Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol. 2008, 426, 145−159.
    • (69) Bramucci, E.; Paiardini, A.; Bossa, F.; Pascarella, S. PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL. BMC Bioinf. 2012, 13 (Suppl.
    • 4), S2.
    • (70) Thomsen, R.; Christensen, M. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 2006, 49, 3315−3321.
  • Discovered through pilot similarity algorithms. Send us your feedback.

  • BioEntity Site Name
    2r6tProtein Data Bank
    3ebhProtein Data Bank
    3kr4Protein Data Bank

Share - Bookmark

Funded by projects

  • NHMRC | Targeting the Plasmodium ...
  • ARC | Structural and functional c...
  • ARC | Linkage Projects - Grant ID...

Cite this article