Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ip, Chung Man; Troisi, Alessandro (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QD, TJ
We perform a computational study of three different reaction mechanisms for the photo-catalytic reduction of CO2 on the TiO2 anatase(101) surface known as (i) the carbene, (ii) the formaldehyde and (iii) the glyoxal pathways. We define a set of approximations that allows testing a number of mechanistic hypotheses and design experiments to validate them. We find that the energetically most favourable reaction mechanism among those proposed in the literature is the formaldehyde path, and the rate-limiting step is likely to be the formation of CH3 radicals from dissociation of CH3OH. We show that an intermediate that supports this mechanism is OCH2OH. We also find that formaldehyde would be an energetically favorable intermediate forming from CO and HCO, intermediates that are proposed in the early stage of the carbene and glyoxal pathways respectively. Some possible variants of mechanisms and methods to ease the formation of CH3 radicals are also discussed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • E. J. Maginn, J. Phys. Chem. Lett., 2010, 1, 3478.
    • M. Mikkelsen, M. Jørgensen and F. C. Krebs, Energy Environ. Sci., 2010, 3, 43.
    • M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemannt, Chem. Rev., 1995, 95, 69.
    • A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev., 1995, 95, 735.
    • W. Y. Teoh, J. a. Scott and R. Amal, J. Phys. Chem. Lett., 2012, 3, 629.
    • N. M. Dimitrijevic, B. K. Vijayan, O. G. Poluektov, T. Rajh, K. A. Gray, H. He and P. Zapol, J. Am. Chem. Soc., 2011, 133, 3964.
    • S. N. Habisreutinger, L. Schmidt-Mende and J. K. Stolarczyk, Angew. Chem. Int. Ed., 2013, 52, 7372.
    • J. Tang, J. R. Durrant and D. R. Klug, J. Am. Chem. Soc., 2008, 130, 13885.
    • K. Li, X. An, K. H. Park, M. Khraisheh and J. Tang, Catal. Today, 2014, 224, 3.
    • H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082.
    • Z. P. Liu and P. Hu, J. Chem. Phys., 2001, 115, 4977.
    • Z. P. Liu and P. Hu, J. Am. Chem. Soc., 2003, 125, 1958.
    • J. K. Nørskov, T. Bligaard, J. Rossmeisl and C. H. Christensen, Nat. chem., 2009, 1, 37.
    • S. Bai, J. Jiang, Q. Zhang and Y. Xiong, Chem. Soc. Rev., 2015, 44, 2893.
    • M. Anpo, H. Yamashita, Y. Ichihashi and S. Ehara, J. Electroanal. chem., 1995, 396, 21.
    • T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature, 1979, 277, 637.
    • I. A. Shkrob, T. W. Marin, H. He and P. Zapol, J. Phys. Chem. C, 2012, 116, 9450.
    • K. Koci, L. Obalova and O. Solcova, Chem. Process Eng., 2010, 31, 395.
    • C. C. Yang, Y. H. Yu, B. van der Linden, J. C. S. Wu and G. Mul, J. Am. Chem. Soc., 2010, 132, 8398.
    • N. M. Dimitrijevic, I. A. Shkrob, D. J. Gosztola and T. Rajh, J. Phys. Chem. C, 2012, 116, 878.
    • G. R. Dey and K. Pushpa, Res. Chem. Intermed., 2007, 33, 631.
    • I. A. Shkrob, N. M. Dimitrijevic, T. W. Marin, H. He and P. Zapol, J. Phys. Chem. C, 2012, 116, 9461.
    • J. Rasko and F. Solymosi, J. Phys. Chem., 1994, 98, 7147.
    • V. P. Indrakanti, H. H. Schobert and J. D. Kubicki, Energy Fuels, 2009, 23, 5247.
    • L. Liu, H. Zhao, J. M. Andino and Y. Li, ACS Catal., 2012, 2, 1817.
    • C. C. Lo, C. H. Hung, C. S. Yuan and J. F. Wu, Sol. Energ. Mat. Sol., 2007, 91, 1765.
    • A. J. Nozik, Nature, 1975, 257, 383.
    • Á. Valdés, Z. W. Qu, G. J. Kroes, J. Rossmeisl and J. K. Nørskov, J. Phys. Chem. C, 2008, 112, 9872.
    • J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, 108, 17886.
    • Y. F. Li, Z. P. Liu, L. Liu and W. Gao, J. Am. Chem. Soc., 2010, 132, 13008.
    • X. Shen, Y. Small, J. Wang, P. Allen, M. Fernandez-Serra, M. Hybertsen and J. Muckerman, J. Phys. Chem. C, 2010, 114, 13695.
    • A. V Akimov, A. J. Neukirch and O. V Prezhdo, Chem. Rev., 2013, 113, 4496.
    • J. Chen, Y. F. Li, P. Sit and A. Selloni, J. Am Chem. Soc., 2013, 135, 18774.
    • J. Cheng, X. Liu, J. a Kattirtzi, J. VandeVondele and M. Sprik, Angew. Chem. Int. Ed., 2014, 53, 12046.
    • S. Hammes-Schiffer and A. A. Stuchebrukhov, Chem Rev, 2010, 110, 6939.
    • C. Venkataraman, A. V. Soudackov and S. Hammes-Schiffer, J. Phys. Chem. C, 2008, 112, 12386.
    • B. H. Solis and S. Hammes-Schiffer, Inorg. Chem., 2014, 53, 6427.
    • H. He, P. Zapol and L. A. Curtiss, Energy Environ. Sci., 2012, 5, 6196.
    • Y. Ji and Y. Luo, ACS Catal., 2016, 6, 2018.
    • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, J. Phys. Condens. Matter, 2009, 21, 395502.
    • N. Martsinovich, D. R. Jones and A. Troisi, J. Phys. Chem. C, 2010, 114, 22659.
    • G. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem. Phys., 2000, 113, 9901.
    • A. Michaelides, Z. P. Liu, C. J. Zhang, A. Alavi, D. A. King and P. Hu, J. Am. Chem. Soc., 2003, 125, 3704.
    • M. Saeys, M. F. Reyniers, G. B. Marin, V. Van Speybroeck and M. Waroquier, ChemPhysChem, 2006, 7, 188.
    • M. M. Islam, M. Calatayud and G. Pacchioni, J. Phys. Chem. C, 2011, 115, 6809.
    • U. Aschauer and A. Selloni, Phys. Chem. Chem. Phys., 2012, 14, 16595.
    • E. Maggio, N. Martsinovich and A. Troisi, J. Phys. Condens. Matter, 2016, 28, 074004.
    • C. Di Valentin, G. Pacchioni and A. Selloni, J. Phys. Chem. C, 2009, 113, 20543.
    • D. Cheng, F. R. Negreiros, E. Apra and A. Fortunelli, ChemSusChem, 2013, 6, 944.
    • P. R. Schreiner, H. P. Reisenauer, F. C. Pickard IV, A. C. Simmonett, W. D. Allen, E. Mátyus and A. G. Császár, Nature, 2008, 453, 906.
    • E. C. C. Baly, I. M. Heilbron and W. F. Barker, J. Chem. Soc. Trans., 1921, 1025.
    • Y. Hori, R. Takahashi, Y. Yuzuru and A. Murata, J. Phys. Chem. B, 1997, 101, 7075.
    • T. Bligaard, J. K. Nørskov, S. Dahl, J. Matthiesen, C. H. Christensen and J. Sehested, J. Catal., 2004, 224, 206.
    • R. P. Bell, Proc. R. Soc. London, Ser. A, 1936, 154, 414.
    • M. G. Evans and M. Polanyi, Trans. Faraday Soc., 1936, 32, 1936.
    • A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, Energy Environ. Sci., 2010, 3, 1311.
    • A. Vittadini, A. Selloni, F. P. Rotzinger and M. Grätzel, J. Phys. Chem. B, 2000, 104, 1300.
    • H. Liu, M. Zhao, Y. Lei, C. Pan and W. Xiao, Comp. Mater. Sci., 2012, 51, 389.
    • M. Shen and M. A. Henderson, J. Phys. Chem. Lett., 2011, 2, 2707.
    • M. A. Henderson, Surf. Sci. Rep., 2011, 66, 185.
    • Q. Cao, S. Berski, Z. Latajka, M. Räsänen and L. Khriachtchev, Phys. Chem. Chem. Phys., 2014, 16, 5993.
    • A. J. Foster and R. F. Lobo, Chem. Soc. Rev, 2010, 39, 4783.
    • S. H. Kim, P. C. Stair and E. Weitz, Langmuir, 1998, 14, 4156.
    • J. Cunningham and A. L. Leahy, J. Phys. Chem., 1972, 76, 2353.
    • M. E. Pronsato, C. Pistonesi, A. Juan, A. P. Farkas, L. Bugyi and F. Solymosi, J. Phys. Chem. C, 2011, 115, 2798.
    • S. J. Suresh and V. M. Naik, J. Chem. Phys., 2000, 113, 9727.
    • D. C. Sorescu, W. A. Al-Saidi and K. D. Jordan, J. Chem. Phys., 2011, 135, 124701.
    • P. V. Kamat, J. Phys. Chem. Lett., 2012, 3, 663.
    • B. Kaduk, T. Kowalczyk and T. Van Voorhis, Chem. Rev., 2012, 112, 321.
    • E. Poli, J. D. Elliott, L. E. Ratcliff, L. Andrinopoulos, J. Dziedzic, N. D. M. Hine, A. A. Mostofi, C. K. Skylaris, P. D. Haynes and G. Teobaldi, J. Phys. Condens. Matter, 2016, 28, 074003.
    • Y. F. Li, U. Aschauer, J. Chen and A. Selloni, Acc. Chem. Res., 2014, 47, 3361.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article